Data Representation in a Computer
Computer must not only be able to carry out computations, they must be able to do them quickly and efficiently. There are several data representations, typically for integers, real numbers, characters, and logical values.

Number Representation in Various Numeral Systems

A numeral system is a collection of symbols used to represent small numbers, together with a system of rules for representing larger numbers. Each numeral system uses a set of digits. The number of various unique digits, including zero, that a numeral system uses to represent numbers is called base or radix.

Base - b numeral system

b basic symbols (or digits) corresponding to natural numbers between 0 and b − 1 are used in the representation of numbers.

To generate the rest of the numerals, the position of the symbol in the figure is used. The symbol in the last position has its own value, and as it moves to the left its value is multiplied by b.

We write a number in the numeral system of base b by expressing it in the form

N(b) =anan−1an−2...a1a0a−1a−2...a−m (1)

N(b), with n+1 digit for integer and m digits for fractional part, represents the sum:

	
Figure 1

in the decimal system. Note that ai is the ith digit from the position of a0

Decimal, Binary, Octal and Hexadecimal are common used numeral system. The decimal system has ten as its base. It is the most widely used numeral system, because humans have four fingers and a thumb on each hand, giving total of ten digit over both hand.

Switches, mimicked by their electronic successors built of vacuum tubes, have only two possible states: "open" and "closed". Substituting open=1 and closed=0 yields the entire set of binary digits. Modern computers use transistors that represent two states with either high or low voltages. Binary digits are arranged in groups to aid in processing, and to make the binary numbers shorter and more manageable for humans. Thus base 16 (hexadecimal) is commonly used as shorthand. Base 8 (octal) has also been used for this purpose.

Decimal System

Decimal notation is the writing of numbers in the base-ten numeral system, which uses various symbols (called digits) for no more than ten distinct values (0, 1, 2, 3, 4, 5, 6, 7, 8 and 9) to represent any number, no matter how large. These digits are often used with a decimal separator which indicates the start of a fractional part, and with one of the sign symbols + (positive) or − (negative) in front of the numerals to indicate sign.

Decimal system is a place-value system. This means that the place or location where you put a numeral determines its corresponding numerical value. A two in the one's place means two times one or two. A two in the one-thousand's place means two times one thousand or two thousand.

The place values increase from right to left. The first place just before the decimal point is the one's place, the second place or next place to the left is the ten's place, the third place is the hundred's place, and so on.

The place-value of the place immediately to the left of the "decimal" point is one in all place-value number systems. The place-value of any place to the left of the one's place is a whole number computed from a product (multiplication) in which the base of the number system is repeated as a factor one less number of times than the position of the place.

For example, 5246 can be expressed like in the following expressions

	5246 =5×103+2×102+4×101+6×100

	  =5×1000+2×100+4×10+6×1

 (2)

The place-value of any place to the right of the decimal point is a fraction computed from a product in which the reciprocal of the base—or a fraction with one in the numerator and the base in the denominator—is repeated as a factor exactly as many times as the place is to the right of the decimal point.

For example

	254.68=2×102+5×101+4×100+6×10−1+8×10−2

	   =200+50+4+

6/10 + 8/100

Binary System

The binary number system is base 2 and therefore requires only two digits, 0 and 1. The binary system is useful for computer programmers, because it can be used to represent the digital on/off method in which computer chips and memory work.

A binary number can be represented by any sequence of bits (binary digits), which in turn may be represented by any mechanism capable of being in two mutually exclusive states.

Counting in binary is similar to counting in any other number system. Beginning with a single digit, counting proceeds through each symbol, in increasing order. Decimal counting uses the symbols 0 through 9, while binary only uses the symbols 0 and 1.

When the symbols for the first digit are exhausted, the next-higher digit (to the left) is incremented, and counting starts over at 0A single bit can represent one of two values, 0 or 1.Binary numbers are convertible to decimal numbers.

Here's an example of a binary number, 11101.11(2), and its representation in the decimal notation

	[image: image1.png]Binary Number 1
Position 4
Place Value

Decimal Number 16
So

1110111,

Position of the separator character

o 1.1 1
1o 1
2 1 05 025

Another Conversion

10101,

12+ 0x2° + 1%+ 02!+ 1x2°

Figure 2

235.64(8) =2×82+3×81+5×80+6×8−1+4×8−2=157.8125(10) (4)

Hexadecimal System

The hexadecimal system is base 16. Therefore, it requires 16 digits. The digits 0 through 9 are used, along with the letters A through F, which represent the decimal values 10 through 15. Here is an example of a hexadecimal number and its decimal equivalent:

34F5C(16) =3×164+4×163+15×162+5×161+12×160=216294(10) (5)

The hexadecimal system (often called the hex system) is useful in computer work because it is based on powers of 2. Each digit in the hex system is equivalent to a four-digit binary number. Table below shows some hex/decimal/binary equivalents.

	Hexadecimal Digit
	Decimal Equivalent
	Binary Equivalent

	0
	0
	0000

	1
	1
	0001

	2
	2
	0010

	3
	3
	0011

	4
	4
	0100

	5
	5
	0101

	6
	6
	0110

	7
	7
	0111

	8
	8
	1000

	9
	9
	1001

	A
	10
	1010

	B
	11
	1011

	C
	12
	1100

	D
	13
	1101

	E
	14
	1110

	F
	15
	1111

	10
	16
	10000

	F0
	240
	11110000

	FF
	255
	11111111

Octal System

Binary is also easily converted to the octal numeral system, since octal uses a radix of 8, which is a power of two (namely, 23, so it takes exactly three binary digits to represent an octal digit). The correspondence between octal and binary numerals is the same as for the first eight digits of hexadecimal in the table above. Binary 000 is equivalent to the octal digit 0, binary 111 is equivalent to octal 7, and so forth.

Converting from octal to binary proceeds in the same fashion as it does for hexadecimal:

65(8) =110 1012 (6)

17(8) =001  1112 (7)

And from octal to decimal:

235.64(8) =2×82+3×81+5×80+6×8−1+4×8−2=157.8125(10) (8)

Converting from decimal to base–b

To convert a decimal fraction to another base, say base b, you split it into an integer and a fractional part. Then divide the integer by b repeatedly to get each digit as a remainder. Namely, with value of integer part = dn−1dn−2...d2d1d0(10), first divide value by b the remainder is the least significant digit a0 . Divide the result by b, the remainder is a1 .Continue this process until the result is zero, giving the most significant digit, an−1 . Let's convert 43868(10) to hexadecimal:

	[image: image2.png]a1
a5
= 1
= 10

Remainder

resultis zero,
<o stop

Remainders contain the
resultin desired
system (backwards).

convert to real hex
numbers accarding
ta table:

1

11
I3
B

5,12
ool
5 ¢

10
i3
]

Figure 3: Converting from decimal to hexadecimal

After that, multiply the fractional part by b repeatedly to get each digit as an integer part. We will continue this process until we get a zero as our fractional part or until we recognize an infinite repeating pattern.

Now convert 0.625 to hexadecimal :

.

0.39625 * 16 = 0.625 -------------------------------------> 0

.625* 16 = 10 ---------------------------> A.

We get fractional part is zero.

In summary, the result of conversion 43868.39625(10) to hexadecimal is AB5C.0A

Data Representation in a Computer. Units of Information

Basic Principles

Data Representation refers to the methods used internally to represent information stored in a computer. Computers store lots of different types of information:

· numbers

· text

· graphics of many varieties (stills, video, animation)

· sound

At least, these all seem different to us. However, all types of information stored in a computer are stored internally in the same simple format: a sequence of 0's and 1's. How can a sequence of 0's and 1's represent things as diverse as your photograph, your favorite song, a recent movie, and your term paper?

· Numbers must be expressed in binary form following some specific standard.

· Character data are assigned a sequence of binary digits

· Other types of data, such as sounds, videos or other physical signals are converted to digital following the schema below

Digital signal

Continuous signalPhysical signalComputerConvert ADSensor

	[image: image3.png]Physcal
signal

Continuous

Sensor

signal

Comert 2D

Digital
signal

v

Computer

Figure 4: Process of converting from physical signal to digital signal

Depending on the nature of its internal representation, data items are divided into:

· Basic types (simple types or type primitives) : the standard scalar predefined types that one would expect to find ready for immediate use in any programming language

· Structured types(Higher level types) are then made up from such basic types or other existing higher level types.

Units of Information

The most basic unit of information in a digital computer is called a BIT, which is a contraction of Binary Digit. In the concrete sense, a bit is nothing more than a state of "on" or "off" (or "high" and "low") within a computer circuit. In 1964, the designers of the IBM System/360 mainframe computer established a convention of using groups of 8 bits as the basic unit of addressable computer storage. They called this collection of 8 bits a byte.

Computer words consist of two or more adjacent bytes that are sometimes addressed and almost always are manipulated collectively. The word size represents the data size that is handled most efficiently by a particular architecture. Words can be 16 bits, 32 bits, 64 bits, or any other size that makes sense within the context of a computer's organization.

Some other units of information are described in the following table :

	[image: image4.png]Name Symbol Value Base 16 Base 10

Kio | WK 2= 024 =162% > 10°
mega M 2%= 1,048,576 =16" >10°
giga | G 7%=1,073,741,824 =167% > 10°
tera T 3%=1099,511,627,776 =16 »10"
peta | P 2%=1,125,099,906,842,624 =162% > 10"
ea B 2=1152,921,504,606,846,976 =16'" »10%
zetta Z20=1,180,591,620,717,411,303,424 =169 > 102!

yota | Y 2%=1,208,925,819,614,628,174,708176 =162 = 10%

Figure 5

Representation of Numbers
An integer is a number with no fractional part; it can be positive, negative or zero. In ordinary usage, one uses a minus sign to designate a negative integer. However, a computer can only store information in bits, which can only have the values zero or one. We might expect, therefore, that the storage of negative integers in a computer might require some special technique - allocating one sign bit (often the most significant bit) to represent the sign: set that bit to 0 for a positive number, and set to 1 for a negative number.

Unsigned Integers or numbers
Unsigned integers are represented by a fixed number of bits (typically 8, 16, 32, and/or 64)

· With 8 bits, 0…255 (0016…FF16) can be represented;

· With 16 bits, 0…65535 (000016…FFFF16) can be represented;

· In general, an unsigned integer containing n bits can have a value between 0 and 2n−1

If an operation on bytes has a result outside this range, it will cause an ‘overflow’

Signed Integers or numbers
The binary representation discussed above is a standard code for storing unsigned integer numbers. However, most computer applications use signed integers as well; i.e. the integers that may be either positive or negative.

In binary we can use one bit within a representation (usually the most significant or leading bit) to indicate either positive (0) or negative (1), and store the unsigned binary representation of the magnitude in the remaining bits.

However, for reasons of ease of design of circuits to do arithmetic on signed binary numbers (e.g. addition and subtraction), a more common representation scheme is used called two's complement. In this scheme, positive numbers are represented in binary, the same as for unsigned numbers. On the other hand, a negative number is represented by taking the binary representation of the magnitude:

· Complement the bits : Replace all the 1's with 0's, and all the 0's with 1's;

· Add one to the complemented number.

Example

+4210 = 001010102

and so

-4210 = 110101102

· Binary number with leading 0 is positive

· Binary number with leading 1 is negative

Example

Performing two's complement on the decimal 42 to get -42

Using a eight-bit representation

42= 00101010 Convert to binary

 11010101 Complement the bits

 11010101 Add 1 to the complement

 + 00000001

 11010110 Result is -42 in two's complement

Arithmetic Operations on binary numbers
Addition and Subtraction of integers

Addition and subtraction of unsigned binary numbers

Binary Addition is much like normal everyday (decimal) addition, except that it carries on a value 2 instead of value 10.

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 0, and carry 1 to the next more significant bit

Example

00011010 + 00001100 = 00100110

 1 1
 carries

 0 0 0 1 1 0 1 0
= 26(base 10)

 + 0 0 0 0 1 1 0 0
= 12(base 10)

 0 0 1 0 0 1 1 0
= 38(base 10)

 11010001 + 00111110 = 100011010

 1 1 1
 carries

 1 1 0 1 0 0 0 1
 = 208 (base 10)

 + 0 1 0 0 1 0 0 1
 = 73 (base 10)

 1 0 0 0 1 1 0 1 0 = 281 (base 10)

The result exceeds the magnitude which can be represented with 8 bits. This is an overflow.

Subtraction is executed by using two's complement

Addition and subtraction of signed binary numbers

Multiplication and Division of Integers

Binary Multiplication

Multiplication in the binary system works the same way as in the decimal system:

0 x 0 = 0

0 x 1 = 0

1 x 0 = 0

1 x 1 = 1, and no carry or borrow bits

Example

00101001 × 00000110 = 11110110

 0 0 1 0 1 0 0 1
 =
41(base 10)

× 0 0 0 0 0 1 1 0
 =
6(base 10)

 0 0 0 0 0 0 0

 0 1 0 1 0 0 1

 0 1 0 1 0 0 1

0 0 1 1 1 1 0 1 1 0
 =
246(base 10)

00010111 × 00000011 = 01000101

 0 0 0 1 0 1 1 1
 =
23(base 10)

× 0 0 0 0 0 0 1 1
 =
3(base 10)

 1 1 1 1 1

carries

 0 0 1 0 1 1 1

 0 0 1 0 1 1 1

 0 0 1 0 0 0 1 0 1
 =
69(base 10)

Binary division follow the same rules as in decimal division.

	[image: image5.png]divident 5 10010011 | 1011 < divisor
1001
001110 1101 «—— quotient

T

remainders 1011

100 «——— remainder

Figure 6

Logical operations on Binary Numbers

Logical Operation with one or two bits

NOT : Changes the value of a single bit. If it is a "1", the result is "0"; if it is a "0", the result is "1".

AND: Compares 2 bits and if they are both "1", then the result is "1", otherwise, the result is "0".

OR : Compares 2 bits and if either or both bits are "1", then the result is "1", otherwise, the result is "0".

XOR : Compares 2 bits and if exactly one of them is "1" (i.e., if they are different values), then the result is "1"; otherwise (if the bits are the same), the result is "0".

Logical operators between two bits have the following truth table

	x
	y
	x AND y
	x OR y
	x XOR y

	1
	1
	1
	1
	0

	1
	0
	0
	1
	1

	0
	1
	0
	1
	1

	0
	0
	0
	0
	0

Logical Operation with one or two binary numbers

A logical (bitwise) operation operates on one or two bit patterns or binary numerals at the level of their individual bits.

Example

NOT 0111

 = 1000

AND operation

An AND operation takes two binary representations of equal length and performs the logical AND operation on each pair of corresponding bits. In each pair, the result is 1 if the first bit is 1 AND the second bit is 1. Otherwise, the result is 0.

Example

 0101

AND 0011

 = 0001

OR operation

An OR operation takes two bit patterns of equal length, and produces another one of the same length by matching up corresponding bits (the first of each; the second of each; and so on) and performing the logical OR operation on each pair of corresponding bits.

Example

 0101

 OR 0011

 = 0111

XOR Operation

An exclusive or operation takes two bit patterns of equal length and performs the logical XOR operation on each pair of corresponding bits.

Example

 0101

 XOR 0011

 = 0110

Symbol Representation

Basic Principles

It is important to handle character data. Character data is not just alphabetic characters, but also numeric characters, punctuation, spaces, etc. They need to be represented in binary.

There aren't mathematical properties for character data, so assigning binary codes for characters is somewhat arbitrary.

Representation of Real Numbers

Basic Principles

No human system of numeration can give a unique representation to real numbers. If you give the first few decimal places of a real number, you are giving an approximation to it.

Mathematicians may think of one approach : a real number x can be approximated by any number in the range from x - epsilon to x + epsilon. It is fixed-point representation. Fixed-point representations are unsatisfactory for most applications involving real numbers.

Scientists or engineers will probably use scientific notation: a number is expressed as the product of a mantissa and some power of ten.

A system of numeration for real numbers will typically store the same three data -- a sign, a mantissa, and an exponent -- into an allocated region of storage

The analogues of scientific notation in computer are described as floating-point representations.

In the decimal system, the decimal point indicates the start of negative powers of 10.

12.34=1∗101+2∗100+3∗10−1+4∗10−2 (9)

If we are using a system in base k (ie the radix is k), the ‘radix point’ serves the same function:

	101.1012=1∗22+0∗21+1∗20+1∗2−1+0∗2−2+1∗22

	      = 4(10) +1(10) +0.5(10) 0.125(10)

	      = 5.625(10)

(10)

A floating point representation allows a large range of numbers to be represented in a relatively small number of digits by separating the digits used for precision from the digits used for range.

To avoid multiple representations of the same number floating point numbers are usually normalized so that there is only one nonzero digit to the left of the ‘radix’ point, called the leading digit.

A normalized (non-zero) floating-point number will be represented using

(−1) sd0·d1d2...dp−1×be (11)

where

· s is the sign,

· d0·d1d2...dp−1 - termed the significand - has p significant digits, each digit satisfies 0≤di <b

· e, emin﻿≤e≤emax﻿ , is the exponent

· b is the base (or radix)

Example

If k = 10 (base 10) and p = 3, the number 0·1 is represented as 0.100

If k = 2 (base 2) and p = 24, the decimal number 0·1 cannot be represented exactly but is approximately 1·10011001100110011001101×2−4

Formally,

	(−1) sd0·d1d2...dp−1 be represents the value (−1) s

{ d0+d1b−1+d2b−2...d−1b(p−1)
be }
In brief, a normalized representation of a real number consist of

· The range of the number : the number of digits in the exponent (i.e. by emax﻿) and the base b to which it is raised

· The precision : the number of digits p in the significand and its base b

Binary-coded decimal (BCD)

In computing and electronic systems, binary-coded decimal (BCD) (sometimes called natural binary-coded decimal, NBCD) is an encoding for decimal numbers in which each digit is represented by its own binary sequence. Its main virtue is that it allows easy conversion to decimal digits for printing or display, and allows faster decimal calculations. Its drawbacks are a small increase in the complexity of circuits needed to implement mathematical operations. Uncompressed BCD is also a relatively inefficient encoding—it occupies more space than a purely binary representation.

In BCD, a digit is usually represented by four bits which, in general, represent the values/digits/characters 0–9. Other bit combinations are sometimes used for a sign or other indications.

Basics
To BCD-encode decimal number using the common encoding, each decimal digit is stored in a four-bit nibble.

Decimal: 0 1 2 3 4 5 6 7 8 9

BCD: 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001

Thus, the BCD encoding for the number 127 would be:

 0001 0010 0111

Since most computers store data in eight-bit bytes, there are two common ways of storing four-bit BCD digits in those bytes:

· each digit is stored in one nibble of a byte, with the other nibble being set to all zeros, all ones (as in the EBCDIC code), or to 0011 (as in the ASCII code)

· two digits are stored in each byte.

Unlike binary-encoded numbers, BCD-encoded numbers can easily be displayed by mapping each of the nibbles to a different character. Converting a binary-encoded number to decimal for display is much harder, as this generally involves integer multiplication or divide operations. BCD also avoids problems where fractions that can be represented exactly in decimal cannot be in binary (eg one-tenth).
ASCII (American Standard Code for Information Interchange) Code
ASCII stands for American Standard Code for Information Interchange. Pronounced "as-kee," the adoption of the ASCII character coding scheme was an important milestone in the history of the computing industry.

Something which computer programmers take for granted today, ASCII codes were developed during the early 1960s as a standard which assigns numeric values to letters, numbers, punctuation marks, and other characters. The uppercase letter "A," for instance, is represented by the number 65, while the lowercase letter "a" is represented by the number 97. The number "0" is represented by the number 48, while the blank space character is represented by the number 32. The first 32 numbers are reserved for non-printable control codes such as the null character (0), audible bell (07), backspace (08), horizontal tab (09), and form feed (12).

Before the development of ASCII, communication between different computers was difficult or impossible. Each computer manufacturer used its own digital coding scheme for representing characters. IBM, for example, used a 6-bit character coding scheme derived from the binary coded decimal (BCD) system of Hollerith-designed punch cards, while UNIVAC used a 6-bit variant of the US Army's FIELDATA coding system. So in May, 1961, Bob Bemer of IBM requested that ANSI, the American National Standards Institute, develop a standard coding scheme to enable diverse computers to communicate with each other. After lengthy debate, ASCII was published in 1963, shortly before the IBM System/360 computer was released. The IBM 360 development team had designed an extended BCD coding system (EBCDIC) in the interim, and they unfortunately didn't have enough lead time to modify the operating system and peripherals for ASCII prior to the System/360's 1964 release. Many years later, in 1981, IBM introduced their Personal Computer which used the ASCII coding standard, and ASCII has now been widely adopted by most computer manufacturers. Today, most personal computers and their peripherals use
The standard ASCII table defines 128 character codes (from 0 to 127), of which, the first 32 are control codes (non-printable), and the remaining 96 character codes are representable characters.
Important Questions besides the topics given in notes:
Q1. Explain Difference between Digital, analog and hybrid computers?
Q2. find X in (126)10 = (X)7
Q3. find X in (126)10 = (84)X
Q4. Characterstics of a good computer?
Q5. what is information system?

Q6. Difference between weighted and non-weighted codes?
Q7. Difference between Low-level and High-level languages?
Q8, what is assempler, compiler and interpretor?

Q9. what is bcd. Explain how to add two bcd numbers?
Q10. How to convert from binary to grey code and grey to binary code?
40

