
1Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

2Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Many people understand many definitions of testing :

• What is Testing?

1. Testing is the process of demonstrating that errors are not present.

2. The purpose of testing is to show that a program performs its intended
functions correctly.

3. Testing is the process of establishing confidence that a program does
what it is supposed to do.

These definitions are incorrect.

Software TestingSoftware TestingSoftware TestingSoftware Testing

3Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

A more appropriate definition is:

“Testing is the process of executing a program with

the intent of finding errors.”

Software TestingSoftware TestingSoftware TestingSoftware Testing

4Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

• Why should We Test ?

Although software testing is itself an expensive activity, yet launching of
software without testing may lead to cost potentially much higher than that
of testing, specially in systems where human safety is involved.

In the software life cycle the earlier the errors are discovered and removed,
the lower is the cost of their removal.

5Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

• Who should Do the Testing ?

o Testing requires the developers to find errors from their software.

o It is difficult for software developer to point out errors from own
creations.

o Many organisations have made a distinction between development
and testing phase by making different people responsible for each
phase.

6Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

• What should We Test ?

We should test the program’s responses to every possible input. It means,
we should test for all valid and invalid inputs. Suppose a program requires
two 8 bit integers as inputs. Total possible combinations are 28x28. If only
one second it required to execute one set of inputs, it may take 18 hours to
test all combinations. Practically, inputs are more than two and size is also
more than 8 bits. We have also not considered invalid inputs where so
many combinations are possible. Hence, complete testing is just not
possible, although, we may wish to do so.

7Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Fig. 1: Control flow graph

8Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

The number of paths in the example of Fig. 1 are 1014 or 100 trillions. It is
computed from 520 + 519 + 518 + …… + 51; where 5 is the number of paths
through the loop body. If only 5 minutes are required to test one test path, it
may take approximately one billion years to execute every path.

9Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

People make errors. A good synonym is mistake. This may be a syntax
error or misunderstanding of specifications. Sometimes, there are logical
errors.

When developers make mistakes while coding, we call these mistakes
“bugs”.

Some Terminologies

� Error, Mistake, Bug, Fault and Failure

A fault is the representation of an error, where representation is the mode
of expression, such as narrative text, data flow diagrams, ER diagrams,
source code etc. Defect is a good synonym for fault.

A failure occurs when a fault executes. A particular fault may cause
different failures, depending on how it has been exercised.

10Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Test and Test case terms are used interchangeably. In practice, both are
same and are treated as synonyms. Test case describes an input
description and an expected output description.

The set of test cases is called a test suite. Hence any combination of test
cases may generate a test suite.

� Test, Test Case and Test Suite

Date:Date:

Run by:Written by:

Any suggestion:Post conditions:

Any other observation:Expected Outputs:

If fails, any possible reason (Optional);Inputs:

Result:Pre condition: (If any)

Execution History:Purpose :

Section-II

(After Execution)

Section-I

(Before Execution)

Test Case ID

Fig. 2: Test case template

11Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Verification is the process of evaluating a system or component to
determine whether the products of a given development phase satisfy the
conditions imposed at the start of that phase.

� Verification and Validation

Validation is the process of evaluating a system or component during or at
the end of development process to determine whether it satisfies the
specified requirements .

Testing= Verification+Validation

12Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

� Alpha, Beta and Acceptance Testing

The term Acceptance Testing is used when the software is developed for
a specific customer. A series of tests are conducted to enable the customer
to validate all requirements. These tests are conducted by the end user /
customer and may range from adhoc tests to well planned systematic
series of tests.

The terms alpha and beta testing are used when the software is developed
as a product for anonymous customers.

Alpha Tests are conducted at the developer’s site by some potential
customers. These tests are conducted in a controlled environment. Alpha
testing may be started when formal testing process is near completion.

Beta Tests are conducted by the customers / end users at their sites.
Unlike alpha testing, developer is not present here. Beta testing is
conducted in a real environment that cannot be controlled by the developer.

13Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Input test
data

System
under
test

Output
test data

Input
domain

Output
domain

Functional Testing

Fig. 3: Black box testing

14Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Boundary Value Analysis

Consider a program with two input variables x and y. These input variables
have specified boundaries as:

a ≤ x ≤ b

c ≤ y ≤ d

Fig.4: Input domain for program having two input variables

Input domain

y

d

c

a b
x

15Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Fig. 5: Input domain of two variables x and y with

boundaries [100,300] each

The boundary value analysis test cases for our program with two inputs
variables (x and y) that may have any value from 100 to 300 are: (200,100),
(200,101), (200,200), (200,299), (200,300), (100,200), (101,200), (299,200) and

(300,200). This input domain is shown in Fig. 8.5. Each dot represent a test case

and inner rectangle is the domain of legitimate inputs. Thus, for a program of n

variables, boundary value analysis yield 4n + 1 test cases.

y

x

Input domain

300

200

100

400

0 300200100 400

16Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Example- 8.I

Consider a program for the determination of the nature of roots of a
quadratic equation. Its input is a triple of positive integers (say a,b,c) and
values may be from interval [0,100]. The program output may have one of
the following words.

[Not a quadratic equation; Real roots; Imaginary roots; Equal roots]

Design the boundary value test cases.

17Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Solution

Quadratic equation will be of type:

ax2+bx+c=0

Roots are real if (b2-4ac)>0

Roots are imaginary if (b2-4ac)<0

Roots are equal if (b2-4ac)=0

Equation is not quadratic if a=0

18Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

The boundary value test cases are :

Expected outputcbaTest Case

1

3

2

4

5

7

6

10

8

11

9

12

13

0

50

1

99

100

50

50

50

50

50

50

50

50

50

50

50

50

50

1

0

50

99

50

100

50

50

50

50

50

50

50

50

50

0

50

1

50

99

100

Not Quadratic

Real Roots

Imaginary Roots

Imaginary Roots

Imaginary Roots

Imaginary Roots

Imaginary Roots

Imaginary Roots

Imaginary Roots

Imaginary Roots

Equal Roots

Real Roots

Real Roots

19Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Example – 8.2

Consider a program for determining the Previous date. Its input is a triple of
day, month and year with the values in the range

1 ≤ month ≤ 12

1 ≤ day ≤ 31

1900 ≤ year ≤ 2025

The possible outputs would be Previous date or invalid input date. Design the
boundary value test cases.

20Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Solution

The Previous date program takes a date as input and checks it for validity.
If valid, it returns the previous date as its output.

With single fault assumption theory, 4n+1 test cases can be designed and
which are equal to 13.

21Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

The boundary value test cases are:

Expected outputYearDayMonthTest Case

1

3

2

4

5

7

6

10

8

11

9

12

13

6

6

6

6

6

6

6

1

6

2

6

11

12

15

15

15

15

15

2

1

15

30

15

31

15

15

1900

1962

1901

2024

2025

1962

1962

1962

1962

1962

1962

1962

1962

14 June, 1900

14 June, 1901

14 June, 1962

14 June, 2024

14 June, 2025

31 May, 1962

1 June, 1962

29 June, 1962

Invalid date

14 January, 1962

14 February, 1962

14 November, 1962

14 December, 1962

22Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Example – 8.3

Consider a simple program to classify a triangle. Its inputs is a triple of
positive integers (say x, y, z) and the date type for input parameters ensures
that these will be integers greater than 0 and less than or equal to 100. The
program output may be one of the following words:

[Scalene; Isosceles; Equilateral; Not a triangle]

Design the boundary value test cases.

23Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Solution

The boundary value test cases are shown below:

Expected OutputzyxTest case

Isosceles

Isosceles

Isosceles

Equilateral

Isosceles

Isosceles

Isosceles

Not a triangle

Not a triangle

Not a triangle

Isosceles

Isosceles

Isosceles

1

2

50

99

100

50

50

50

50

50

50

50

50

50

50

50

50

50

1

2

99

100

50

50

50

50

1

2

3

4

5

6

7

8

9

10

11

12

13

50

50

50

50

50

50

50

50

50

1

2

99

100

24Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

It is nothing but the extension of boundary value analysis. Here, we would
like to see, what happens when the extreme values are exceeded with a
value slightly greater than the maximum, and a value slightly less than
minimum. It means, we want to go outside the legitimate boundary of input
domain. This extended form of boundary value analysis is called
robustness testing and shown in Fig. 6

There are four additional test cases which are outside the legitimate input
domain. Hence total test cases in robustness testing are 6n+1, where n is
the number of input variables. So, 13 test cases are:

(200,99), (200,100), (200,101), (200,200), (200,299), (200,300)

(200,301), (99,200), (100,200), (101,200), (299,200), (300,200), (301,200)

Robustness testing

Software TestingSoftware TestingSoftware TestingSoftware Testing

25Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Fig. 8.6: Robustness test cases for two variables x

and y with range [100,300] each

y

x

300

200

100

400

0 300200100 400

26Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

If we reject “single fault” assumption theory of reliability and may like to see
what happens when more than one variable has an extreme value. In
electronic circuits analysis, this is called “worst case analysis”. It is more
thorough in the sense that boundary value test cases are a proper subset
of worst case test cases. It requires more effort. Worst case testing for a
function of n variables generate 5n test cases as opposed to 4n+1 test
cases for boundary value analysis. Our two variables example will have
52=25 test cases and are given in table 1.

Worst-case testing

Software TestingSoftware TestingSoftware TestingSoftware Testing

27Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

299299191001016

200299183001005

101299172991004

100299162001003

300200151011002

299200141001001

yxyx

InputsTest case

number

InputsTest case

number

--20020013

3003002510120012

2993002410020011

2003002330010110

101300222991019

100300212001018

300299201011017

Table 1: Worst cases test inputs for two variables example

28Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Example - 8.4

Consider the program for the determination of nature of roots of a quadratic
equation as explained in example 8.1. Design the Robust test case and worst
test cases for this program.

29Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Solution

Robust test cases are 6n+1. Hence, in 3 variable input cases total number
of test cases are 19 as given on next slide:

30Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing
Expected OutputcbaTest case

Invalid input`

Not quadratic equation

Imaginary roots

Real roots

Imaginary roots

Invalid input

Invalid input

Imaginary roots

Imaginary roots

Invalid input

Imaginary roots

Imaginary roots

Equal roots

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

-1

0

1

99

100

101

1

2

3

4

5

6

7

8

9

10

11

12

13

-1

0

1

50

99

100

101

50

50

50

50

50

50

Invalid input

Real roots

Imaginary roots

Real roots

Invalid input

Imaginary roots

-1

0

1

99

100

101

50

50

50

50

50

50

14

15

16

17

18

19

50

50

50

50

50

50

31Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

In case of worst test case total test cases are 5n. Hence, 125 test cases will be

generated in worst test cases. The worst test cases are given below:

Not Quadratic100005

Not Quadratic99004

Not Quadratic50003

Not Quadratic1002

Not Quadratic0001

Expected outputcbaTest Case

Not Quadratic1001010

Not Quadratic99109

Not Quadratic50108

Not Quadratic1107

Not Quadratic0106

Not Quadratic9950014

Not Quadratic5050013

Not Quadratic150012

Not Quadratic050011

32Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Not Quadratic10099020

Not Quadratic9999019

Not Quadratic5099018

Not Quadratic199017

Not Quadratic099016

Not Quadratic10050015

Expected outputcbATest Case

Not Quadratic100100025

Not Quadratic99100024

Not Quadratic50100023

Not Quadratic1100022

Not Quadratic0100021

Real Roots01131

Imaginary1000130

Imaginary990129

Imaginary500128

Imaginary10127

Equal Roots00126

33Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Real Roots150137

Real Roots050136

Imaginary1001135

Imaginary991134

Imaginary501133

Imaginary11132

Expected outputCbATest Case

Real Roots5099143

Real Roots199142

Real Roots099141

Real Roots10050140

Real Roots9950139

Real Roots5050138

Real Roots50100148

Real Roots1100147

Real Roots0100146

Real Roots10099145

Real Roots9999144`

34Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Imaginary9905054

Imaginary5005053

Imaginary105052

Equal Roots005051

Real Roots100100150

Real Roots99100149

Expected outputCbATest Case

Imaginary10015060

Imaginary9915059

Imaginary5015058

Imaginary115057

Real Roots015056

Imaginary10005055

Imaginary100505065

Imaginary99505064

Imaginary50505063

Real Roots1505062

Real Roots0505061

35Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Real Roots01005071

Imaginary100995070

Imaginary99995069

Imaginary50995068

Real Roots1995067

Real Roots0995066

Expected outputCbATest Case

Imaginary109977

Equal Roots009976

Imaginary1001005075

Imaginary991005074

Equal Roots501005073

Real Roots11005072

Imaginary119982

Real Roots019981

Imaginary10009980

Imaginary9909979

Imaginary5009978

36Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Imaginary50509988

Real Roots1509987

Real Roots0509986

Imaginary10019985

Imaginary9919984

Imaginary5019983

Expected outputCbATest Case

Imaginary99999994

Imaginary Roots50999993

Real Roots1999992

Real Roots0999991

Imaginary100509990

Imaginary99509989

Imaginary10010099100

Imaginary991009999

Imaginary501009998

Real Roots11009997

Real Roots01009996

Imaginary100999995

37Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Real Roots01100106

Imaginary1000100105

Imaginary990100104

Imaginary500100103

Imaginary10100102

Equal Roots00100101

Expected outputCbATest Case

Real Roots150100112

Real Roots050100111

Imaginary1001100110

Imaginary991100109

Imaginary501100108

Imaginary11100107

Imaginary5099100118

Real Roots199100117

Real Roots099100116

Imaginary10050100115

Imaginary9950100114

Imaginary5050100113

38Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Imaginary100100100125

Imaginary99100100124

Imaginary50100100123

Real Roots1100100122

Real Roots0100100121

Imaginary10099100120

Imaginary9999100119

Expected outputCbATest Case

39Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Example – 8.5

Consider the program for the determination of previous date in a calendar as
explained in example 8.2. Design the robust and worst test cases for this
program.

40Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Solution

Robust test cases are 6n+1. Hence total 19 robust test cases are designed
and are given on next slide.

41Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing
Expected OutputYearDayMonthTest case

Invalid date (outside range)

14 June, 1900

14 June, 1962

14 June, 1901

14 June, 2025

Invalid date (outside range)

Invalid date

14 June, 2024

31 May, 1962

Invalid date

1 June, 1962

29 June, 1962

Invalid date

1899

1900

1901

1962

2024

2025

2026

1962

1962

1962

1962

1962

1962

15

15

15

15

15

15

15

0

1

2

30

31

32

1

2

3

4

5

6

7

8

9

10

11

12

13

6

6

6

6

6

6

6

6

6

6

6

6

6

Invalid date

14 January, 1962

14 November, 1962

14 February, 1962

Invalid date

14 December, 1962

1962

1962

1962

1962

1962

1962

15

15

15

15

15

15

14

15

16

17

18

19

0

1

2

11

12

13

42Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

In case of worst test case total test cases are 5n. Hence, 125 test cases will be

generated in worst test cases. The worst test cases are given below:

31 December, 20242025115

31 December, 20232024114

31 December, 19611962113

31 December, 19001901112

31 December, 18991900111

Expected outputYearDayMonthTest Case

1 January, 202520252110

1 January, 20242024219

1 January, 19621962218

1 January, 19011901217

1 January, 1900 1900216

14 January, 2024202415114

14 January, 1962196215113

14 January, 1901190115112

14 January, 1900190015111

43Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

29 January, 2025202530120

29 January, 2024202430119

29 January, 1962196230118

29 January, 1901190130117

29 January, 1900 190030116

14 January, 2025202515115

Expected outputcbATest Case

30 January, 2025202531125

30 January, 2024202431124

30 January, 1962196231123

30 January, 1901190131122

30 January, 1900 190031121

1 February, 190019002231

31 January, 202520251230

31 January, 202420241229

31 January, 196219621228

31 January, 190119011227

31 January, 190019001226

44Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

14 February, 1901190115237

14 February, 1900190015236

1 February, 202520252235

1 February, 202420242234

1 February, 196219622233

1 February, 190119012232

Expected outputYearDayMonthTest Case

Invalid date196230243

Invalid date190130242

Invalid date190030241

14 February, 2025202515240

14 February, 2024202415239

14 February, 1962196215238

Invalid date196231248

Invalid date190131247

Invalid date190031246

Invalid date202530245

Invalid date202430244

45Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

31 May, 202420241654

31 May, 196219621653

31 May, 190119011652

31 May, 190019001651

Invalid date202531250

Invalid date202431249

Expected outputYearDayMonthTest Case

1 June, 202520252660

1 June, 202420242659

1 June, 196219622658

1 June, 190119012657

1 June, 190019002656

31 May, 202520251655

14 June, 2025202515665

14 June, 2024202415664

14 June, 1962196215663

14 June, 1901190115662

14 June, 1900190015661

46Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Invalid date190031671

29 June, 2025202530670

29 June, 2024202430669

29 June, 1962196230668

29 June, 1901190130667

29 June, 1900190030666

Expected outputYearDayMonthTest Case

31 October, 1901190111177

31 October, 1900190011176

Invalid date202531675

Invalid date202431674

Invalid date196231673

Invalid date190131672

1 November, 1901190121182

1 November, 1900190021181

31 October, 2025202511180

31 October, 2024202411179

31 October, 1962196211178

47Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

14 November, 19621962151188

14 November, 19011901151187

14 November, 19001900151186

1 November, 2025202521185

1 November, 2024202421184

1 November, 1962196221183

Expected outputYearDayMonthTest Case

29 November, 20242024301194

29 November, 19621962301193

29 November, 19011901301192

29 November, 19001900301191

14 November, 20252025151190

14 November, 20242024151189

Invalid date20253111100

Invalid date2024311199

Invalid date1962311198

Invalid date1901311197

Invalid date1900311196

29 November, 20252025301195

48Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

1 December, 19001900212106

30 November, 20252025112105

30 November, 20242024112104

30 November, 19621962112103

30 November, 19011901112102

30 November, 19001900112101

Expected outputYearDayMonthTest Case

14 December, 190119011512112

14 December, 190019001512111

1 December, 20252025212110

1 December, 20242024212109

1 December, 19621962212108

1 December, 19011901212107

29 December, 196219623012118

29 December, 190119013012117

29 December, 190019003012116

14 December, 202520251512115

14 December, 202420241512114

14 December, 196219621512113

49Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

30 December, 202520253112125

30 December, 202420243112124

30 December, 196219623112123

30 December, 190119013112122

30 December, 190019003112121

29 December, 202520253012120

29 December, 202420243012119

Expected outputYearDayMonthTest Case

50Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Example – 8.6

Consider the triangle problem as given in example 8.3. Generate robust and
worst test cases for this problem.

51Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Solution

Robust test cases are given on next slide.

52Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing
Expected Outputzyx`

Invalid input`

Isosceles

Equilateral

Isosceles

Not a triangle

Invalid input

Invalid input

Isosceles

Isosceles

Invalid input

Isosceles

Isosceles

Not a triangle

0

1

2

50

99

100

101

50

50

50

50

50

50

50

50

50

50

50

50

50

0

1

2

99

100

101

1

2

3

4

5

6

7

8

9

10

11

12

13

50

50

50

50

50

50

50

50

50

50

50

50

50

Invalid input

Isosceles

Isosceles

Isosceles

Invalid input

Not a triangle

50

50

50

50

50

50

50

50

50

50

50

50

14

15

16

17

18

19

0

1

2

99

100

100

53Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Worst test cases are 125 and are given below:

Not a triangle9950114

Isosceles5050113

Not a triangle250112

Not a triangle150111

Not a triangle1002110

Not a triangle99219

Not a triangle50218

Isosceles2217

Not a triangle1216

Not a triangle100115

Not a triangle99114

Not a triangle50113

Not a triangle2112

Equilateral1111

Expected outputzyxTest Case

54Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Isosceles12231

Not a triangle1001230

Not a triangle991229

Not a triangle501228

Isosceles21227

Not a triangle11226

Isosceles100100125

Not a triangle99100124

Not a triangle50100123

Not a triangle2100122

Not a triangle1100121

Not a triangle10099120

Isosceles9999119

Not a triangle5099118

Not a triangle299117

Not a triangle199116

Not a triangle10050115

Expected outputcbATest Case

55Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Not a triangle50100248

Not a triangle2100247

Not a triangle1100246

Scalene10099245

Isosceles9999244

Not a triangle5099243

Not a triangle299242

Not a triangle199241

Not a triangle10050240

Not a triangle9950239

Isosceles5050238

Not a triangle250237

Not a triangle150236

Not a triangle1002235

Not a triangle992234

Not a triangle502233

Equilateral22232

Expected outputCbATest Case

56Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Not a triangle99505065

Isosceles50505064

Equilateral2505063

Isosceles1505062

Isosceles100505061

Not a triangle9925060

Not a triangle5025059

Isosceles225058

Not a triangle125057

Not a triangle10025056

Not a triangle9915055

Not a triangle5015054

Isosceles215053

Not a triangle115052

Not a triangle10015051

Isosceles99100250

Scalene50100249

Expected outputCbATest Case

57Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Not a triangle229982

Not a triangle129981

Not a triangle10019980

Isosceles9919979

Not a triangle5019978

Not a triangle219977

Not a triangle115076

Isosceles1001005075

Scalene991005074

Not a triangle501005073

Not a triangle21005072

Not a triangle11005071

Scalene100995070

Isosceles99995069

Isosceles50995068

Not a triangle2995067

Not a triangle1995066

Expected outputCBATest Case

58Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Isosceles10010099100

Isosceles991009999

Scalene501009998

Scalene21009997

Not a triangle11009996

Isosceles100999995

Equilateral99999994

Isosceles50999993

Isosceles2999992

Isosceles1999991

Scalene100509990

Isosceles99509989

Isosceles50509988

Not a triangle2509987

Not a triangle1509986

Scalene10029985

Isosceles9929984

Not a triangle5029983

Expected outputCbATest Case

59Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Scalene5099100118

Scalene299100117

Not a triangle199100116

Isosceles10050100115

Scalene9950100114

Not a triangle5050100113

Not a triangle250100112

Not a triangle150100111

Isosceles1002100110

Scalene992100109

Not a triangle502100108

Not a triangle22100107

Not a triangle12100106

Isosceles1001100105

Not a triangle991100104

Not a triangle501100103

Not a triangle21100102

Not a triangle11100101

Expected outputCbATest Case

60Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Equilateral100100100125

Isosceles99100100124

Isosceles50100100123

Isosceles2100100122

Isosceles1100100121

Isosceles10099100120

Isosceles9999100119

Expected outputCbATest Case

61Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

In this method, input domain of a program is partitioned into a finite number of

equivalence classes such that one can reasonably assume, but not be

absolutely sure, that the test of a representative value of each class is
equivalent to a test of any other value.

Two steps are required to implementing this method:

Equivalence Class Testing

1. The equivalence classes are identified by taking each input condition and
partitioning it into valid and invalid classes. For example, if an input

condition specifies a range of values from 1 to 999, we identify one valid
equivalence class [1<item<999]; and two invalid equivalence classes

[item<1] and [item>999].

2. Generate the test cases using the equivalence classes identified in the
previous step. This is performed by writing test cases covering all the valid

equivalence classes. Then a test case is written for each invalid equivalence
class so that no test contains more than one invalid class. This is to ensure

that no two invalid classes mask each other.

62Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Fig. 7: Equivalence partitioning

System
under test

OutputsValid
inputs

Invalid input

Input domain Output domain

Most of the time, equivalence class testing defines classes of the input domain.

However, equivalence classes should also be defined for output domain.
Hence, we should design equivalence classes based on input and output

domain.

63Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Example 8.7

Consider the program for the determination of nature of roots of a quadratic
equation as explained in example 8.1. Identify the equivalence class test
cases for output and input domains.

64Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Solution

Output domain equivalence class test cases can be identified as follows:

O1={<a,b,c>:Not a quadratic equation if a = 0}

O1={<a,b,c>:Real roots if (b2-4ac)>0}

O1={<a,b,c>:Imaginary roots if (b2-4ac)<0}

O1={<a,b,c>:Equal roots if (b2-4ac)=0}`

The number of test cases can be derived form above relations and shown
below:

Equal roots50100504

Imaginary roots5050503

Real roots505012

Not a quadratic equation505001

Expected outputcbaTest case

65Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

We may have another set of test cases based on input domain.

I1= {a: a = 0}

I2= {a: a < 0}

I3= {a: 1 ≤ a ≤ 100}

I4= {a: a > 100}

I5= {b: 0 ≤ b ≤ 100}

I6= {b: b < 0}

I7= {b: b > 100}

I8= {c: 0 ≤ c ≤ 100}

I9= {c: c < 0}

I10={c: c > 100}

66Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Expected outputcbaTest Case

1

3

2

4

5

7

6

10

8

9

0

50

-1

101

50

50

50

50

50

50

50

50

50

50

50

101

-1

50

50

50

50

50

50

50

50

50

50

101

50

-1

Not a quadratic equation

Invalid input

Imaginary Roots

invalid input

Imaginary Roots

invalid input

invalid input

Imaginary Roots

invalid input

invalid input

Here test cases 5 and 8 are redundant test cases. If we choose any value other

than nominal, we may not have redundant test cases. Hence total test cases are

10+4=14 for this problem.

67Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Example 8.8

Consider the program for determining the previous date in a calendar as
explained in example 8.3. Identify the equivalence class test cases for output
& input domains.

68Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Solution

Output domain equivalence class are:

O1={<D,M,Y>: Previous date if all are valid inputs}

O1={<D,M,Y>: Invalid date if any input makes the date invalid}

Invalid date19623162

14 June, 196219621561

Expected outputYDMTest case

69Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

We may have another set of test cases which are based on input domain.

I1={month: 1 ≤ m ≤ 12}

I2={month: m < 1}

I3={month: m > 12}

I4={day: 1 ≤ D ≤ 31}

I5={day: D < 1}

I6={day: D > 31}

I7={year: 1900 ≤ Y ≤ 2025}

I8={year: Y < 1900}

I9={year: Y > 2025}

70Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Expected outputYDMTest Case

1

3

2

4

5

7

6

8

9

6

13

-1

6

6

6

6

6

6

15

15

15

15

-1

15

32

15

15

1962

1962

1962

1962

1962

1962

1962

1899

2026

14 June, 1962

Invalid input

invalid input

14 June, 1962

invalid input

invalid input

14 June, 1962

invalid input (Value out of range)

Inputs domain test cases are :

invalid input (Value out of range)

71Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example – 8.9

Consider the triangle problem specified in a example 8.3. Identify the
equivalence class test cases for output and input domain.

Software TestingSoftware TestingSoftware TestingSoftware Testing

72Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution

Output domain equivalence classes are:

O1={<x,y,z>: Equilateral triangle with sides x,y,z}

O1={<x,y,z>: Isosceles triangle with sides x,y,z}

O1={<x,y,z>: Scalene triangle with sides x,y,z}

O1={<x,y,z>: Not a triangle with sides x,y,z}

The test cases are:

Software TestingSoftware TestingSoftware TestingSoftware Testing

Expected OutputzyxTest case

Equilateral

Isosceles

Not a triangle

Scalene

50

99

50

50

50

50

99

100

1

2

3

4

50

50

100

50

73Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Input domain based classes are:

I1={x: x < 1}

I2={x: x > 100}

I3={x: 1 ≤ x ≤ 100}

I4={y: y < 1}

I5={y: y > 100}

I6={y: 1 ≤ y ≤ 100}

I7={z: z < 1}

I8={z: z > 100}

I9={z: 1 ≤ z ≤ 100}

74Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Some inputs domain test cases can be obtained using the relationship amongst x,y

and z.

I10={< x,y,z >: x = y = z}

I11={< x,y,z >: x = y, x ≠ z}

I12={< x,y,z >: x = z, x ≠ y}

I13={< x,y,z >: y = z, x ≠ y}

I14={< x,y,z >: x ≠ y, x ≠ z, y ≠ z}

I15={< x,y,z >: x = y + z}

I16={< x,y,z >: x > y +z}

I17={< x,y,z >: y = x +z}

I18={< x,y,z >: y > x + z}

I19={< x,y,z >: z = x + y}

I20={< x,y,z >: z > x +y}

75Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Expected OutputzyxTest case

Invalid input

Invalid input

Equilateral

Equilateral

50

50

50

50

50

50

0

101

50

60

60

50

50

50

50

50

0

101

50

50

50

50

60

50

60

50

1

2

3

4

5

6

7

8

9

10

11

12

13

0

101

50

50

50

50

50

50

50

60

50

50

60

Test cases derived from input domain are:

Invalid input

Invalid input

Invalid input

Invalid input

Equilateral

Equilateral

Isosceles

Isosceles

Isosceles

76Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Expected OutputzyxTest case

Scalene

Not a triangle

50

50

25

50

25

100

100

99

50

50

100

100

50

50

14

15

16

17

18

19

20

100

100

100

50

50

50

25

Not a triangle

Not a triangle

Not a triangle

Not a triangle

Not a triangle

77Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Decision Table Based Testing

XXX

XX

XXX

XXXAction a1

Stub

a2

a3

a4

---FalseTrueFalseTrueFalseTrue

FalseTrueTrue False

FalseTrue

EntryCondition

Stub

C1

C2

C3

Table 2: Decision table terminology

78Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Test case design

N

--

Y

Y N

Y N Y N

Y Y Y YN N N N

X

X

X X

X

X

X X

X

--

--

C1:x,y,z are sides of a triangle?

C2:x = y?

C3:x = z?

C4:y = z?

a1: Not a triangle

a2: Scalene

a3: Isosceles

a4: Equilateral

a5: Impossible

Table 3: Decision table for triangle problem

79Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Table 4: Modified decision table

XXXa5 : Impossible

Xa4 : Equilateral

XXXa3 : Isosceles

Xa2 : Scalene

XXXa1 : Not a triangle

FTFTFTFT------C6 : y = z ?

FFTTFFTT------C5 : x = z ?

FFFFTTTT------C4 : x = y ?

TTTTTTTTF----C3 : z < x + y ?

TTTTTTTTTF--C2 : y < x + z ?

TTTTTTTTTTFConditions

C1 : x < y + z ?

80Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Example 8.10

Consider the triangle program specified in example 8.3. Identify the

test cases using the decision table of Table 4.

81Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Expected OutputzyxTest case

Not a triangle

Equilateral

Isosceles

Impossible

Isosceles

Isosceles

2

2

4

5

?

?

3

?

2

2

5

1

4

2

5

?

?

2

?

3

2

4

1

2

3

4

5

6

7

8

9

10

11

4

1

1

5

?

?

2

?

2

3

3

Solution

There are eleven functional test cases, three to fail triangle property, three
impossible cases, one each to get equilateral, scalene triangle cases, and

three to get on isosceles triangle. The test cases are given in Table 5.

Not a triangle

Not a triangle

Scalene

Impossible

Impossible

Test cases of triangle problem using decision table

82Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Example 8.11

Consider a program for the determination of Previous date. Its input is a triple of day,

month and year with the values in the range

1 ≤ month ≤ 12

1 ≤ day ≤ 31

1900 ≤ year ≤ 2025

The possible outputs are “Previous date” and “Invalid date”. Design the test cases

using decision table based testing.

83Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing
Solution

The input domain can be divided into following classes:

I1= {M1: month has 30 days}

I2= {M2: month has 31 days except March, August and January}

I3= {M3: month is March}

I4= {M4: month is August}

I5= {M5: month is January}

I6= {M6: month is February}

I7= {D1: day = 1}

I8= {D2: 2 ≤ day ≤ 28}

I9= {D3: day = 29}

I10={D4: day = 30}

I11={D5: day = 31}

I12={Y1: year is a leap year}

I13={Y2: year is a common year}

84Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing
The decision table is given below:

a9: Decrement year

a8: Reset month to December

XXXXa7: decrement month

a6: Reset day to 28

a5: Reset day to 29

XXa4: Reset day to 30

XXa3: Reset day to 31

XXXXXXXXXa2: Decrement day

XXa1: Impossible

Y1Y2Y1Y2Y1Y2Y1Y2Y1Y2Y1Y2Y1Y2Y1C3: year in

D3D2D2D1D1D5D5D4D4D3D3D2D2D1D1C2: days in

M2M2M2M2M2M1M1M1M1M1M1M1M1M1M1C1: Months in

151413121110987654321Sr.No.

85Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

a9: Decrement year

a8: Reset month to December

XXa7: decrement month

Xa6: Reset day to 28

Xa5: Reset day to 29

a4: Reset day to 30

a3: Reset day to 31

XXXXXXXXXXXXXa2: Decrement day

a1: Impossible

Y2Y1Y2Y1Y2Y1Y2Y1Y2Y1Y2Y1Y2Y1Y2C3: year in

D5D5D4D4D3D3D2D2D1D1D5D5D4D4D3C2: days in

M3M3M3M3M3M3M3M3M3M3M2M2M2M2M2C1: Months in

302928272625242322212019181716Sr.No.

86Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

XXa9: Decrement year

XXa8: Reset month to December

XXa7: decrement month

a6: Reset day to 28

a5: Reset day to 29

a4: Reset day to 30

XXXXa3: Reset day to 31

XXXXXXXXXXXa2: Decrement day

a1: Impossible

Y1Y2Y1Y2Y1Y2Y1Y2Y1Y2Y1Y2Y1Y2Y1C3: year in

D3D2D2D1D1D5D5D4D4D3D3D2D2D1D1C2: days in

M5M5M5M5M5M4M4M4M4M4M4M4M4M4M4C1: Months in

454443424140393837363534333231Sr.No.

87Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

a9: Decrement year

a8: Reset month to December

XXa7: decrement month

a6: Reset day to 28

a5: Reset day to 29

a4: Reset day to 30

XXa3: Reset day to 31

XXXXXXXXa2: Decrement day

XXXXXa1: Impossible

Y2Y1Y2Y1Y2Y1Y2Y1Y2Y1Y2Y1Y2Y1Y2C3: year in

D5D5D4D4D3D3D2D2D1D1D5D5D4D4D3C2: days in

M6M6M6M6M6M6M6M6M6M6M5M5M5M5M5C1: Months in

605958575655545352515049484746Sr.No.

88Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

28 May, 1964196429May15

14 May, 1962196215May14

14 May, 1964196415May13

30 April, 196219621May12

30 April, 196419641May11

Impossible196231June10

Impossible196431June9

29 June, 1962196230June8

29 June, 1964196430June7

28 June, 1962196229June6

28 June, 1964196429June5

14 June, 1962196215June4

14 June, 1964196415June3

31 May, 196219621June2

31 May, 196419641June1

Expected outputYearDayMonthTest case

89Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

30 March, 1962196231March30

30 March, 1964196431March29

29 March, 1962196230March28

29 March, 1964196430March27

28 March, 1962196229March26

28 March, 1964196429March25

14 March, 1962196215March24

14 March, 1964196415March23

28 February, 196219621March22

29 February, 196419641March21

30 May, 1962196231May20

30 May, 1964196431May19

29 May, 1962196230May18

29 May, 1964196430May17

28 May, 1962196229May16

Expected outputYearDayMonthTest case

90Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

28 January, 1964196429January45

14 January, 1962196215January44

14 January, 1964196415January43

31 December, 196219621January42

31 December, 196419641January41

30 August, 1962196231August40

30 August, 1964196431August39

29 August, 1962196230August38

29 August, 1964196430August37

28 August, 1962196229August36

28 August, 1964196429August35

14 August, 1962196215August34

14 August, 1964196415August33

31 July, 196419621August32

31 July, 196219641August31

Expected outputYearDayMonthTest case

91Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Impossible196231February60

Impossible196431February59

Impossible196230February58

Impossible196430February57

Impossible196229February56

28 February, 1964196429February55

14 February, 1962196215February54

14 February, 1964196415February53

31 January, 196219621February52

31 January, 196419641February51

30 January, 1962196231January50

30 January, 1964196431January49

29 January, 1962196230January48

29 January, 1964196430January47

28 January, 1962196229January46

Expected outputYearDayMonthTest case

92Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Cause Effect Graphing Technique

� Consider single input conditions

Steps

� do not explore combinations of input circumstances

1. Causes & effects in the specifications are identified.

A cause is a distinct input condition or an equivalence class of input conditions.

An effect is an output condition or a system transformation.

2. The semantic content of the specification is analysed and transformed into a

boolean graph linking the causes & effects.

3. Constraints are imposed

4. graph – limited entry decision table

Each column in the table represent a test case.

5. The columns in the decision table are converted into test cases.

93Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

The basic notation for the graph is shown in fig. 8

Fig.8. 8 : Basic cause effect graph symbols

94Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Myers explained this effectively with following example. “The characters in column 1

must be an A or B. The character in column 2 must be a digit. In this situation, the

file update is made. If the character in column 1 is incorrect, message x is issued. If

the character in column 2 is not a digit, message y is issued”.

The causes are

c1: character in column 1 is A

c2: character in column 1 is B

c3: character in column 2 is a digit

and the effects are

e1: update made

e2: message x is issued

e3: message y is issued

95Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Fig. 9: Sample cause effect graph

96Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

The E constraint states that it must always be true that at most

one of c1 or c2 can be 1 (c1 or c2 cannot be 1 simultaneously). The

I constraint states that at least one of c1, c2 and c3 must always be

1 (c1, c2 and c3 cannot be 0 simultaneously). The O constraint
states that one, and only one, of c1 and c2 must be 1. The

constraint R states that, for c1 to be 1, c2 must be 1 (i.e. it is

impossible for c1 to be 1 and c2 to be 0),

97Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Fig. 10: Constraint symbols

98Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Fig. 11: Symbol for masks constraint

99Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Fig. 12 : Sample cause effect graph with exclusive constraint

100Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Example 8.12

Consider the triangle problem specified in the example 8.3. Draw the Cause
effect graph and identify the test cases.

101Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Solution

The causes are

and effects are

c1: side x is less than sum of sides y and z

c2: side y is less than sum of sides x and y

c3: side z is less than sum of sides x and y

c4: side x is equal to side y

c5: side x is equal to side z

c6: side y is equal to side z

e1: Not a triangle

e2: Scalene triangle

e3: Isosceles triangle

e4: Equilateral triangle

e5: Impossible stage

102Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Conditions
C1: x < y + z ? 1 1

X

1 1

X

1

X

1

X

1 11

1

X

10

1 1 1 1 1 1 1 110

0 1 1 1 1 1 1 11X

X 1 1 1 1 0 0 00X

X 1 1 0 0 1 1 00X

X 1 0 1 0 1 0 01X

1

1

1 1

1

1

1

1

1

1

C2: y < x + z ?

C3: z < x + y ?

C4: x = y ?

C5: x = z ?

C6: y = z ?

e1: Not a triangle

e2: Scalene

e3: Isosceles

e4: Equilateral

e5: Impossible

Table 6: Decision table

The cause effect graph is shown in fig. 13 and decision table is shown in table 6.

The test cases for this problem are available in Table 5.

103Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Fig. 13: Cause effect graph of triangle problem

104Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Structural Testing

A complementary approach to functional testing is called structural / white box

testing. It permits us to examine the internal structure of the program.

Path Testing

Path testing is the name given to a group of test techniques based on judiciously

selecting a set of test paths through the program. If the set of paths is properly

chosen, then it means that we have achieved some measure of test thoroughness.

This type of testing involves:

1. generating a set of paths that will cover every branch in the program.

2. finding a set of test cases that will execute every path in the set of program

paths.

105Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Flow Graph

Fig. 14: The basic construct of the flow graph

The control flow of a program can be analysed using a graphical representation

known as flow graph. The flow graph is a directed graph in which nodes are either

entire statements or fragments of a statement, and edges represents flow of control.

106Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

107Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

108Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

109Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

110Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Fig. 15: Program for previous date problem

111Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Fig. 16: Flow graph of previous date
problem

112Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Sequential nodesn615,16,17

Sequential nodes and are combined to form new node n5n513,14

Decision node, if true go to 13 else go to 15n412

Decision node, if true go to 12 else go to 19n311

Decision node, if true go to 13 else go to 44 n210

There is a sequential flow from node 1 to 9n11 to 9

RemarksDD Path graph
corresponding

node

Flow graph
nodes

Cont….

Table 7: Mapping of flow graph nodes and DD path nodes

DD Path Graph

Decision node, if true go to 24 else go to 26n1223

Intermediate noden1122

Decision node, if true go to 22 else go to 27n1021

Intermediate node with one input edge and one output edgen920

Decision node, if true go to 20 else go to 37n819

Edges from node 14 to 17 are terminated heren718

113Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Sequential nodesn1831,32

Decision node, if true go to 31 else go to 33n1730

Sequential nodesn1628,29

Two edges from node 26 & 21 are terminated here. Also a decision noden1527

Two edges from node 25 & 23 are terminated heren1426

Sequential nodesn1324,25

RemarksDD Path graph

corresponding
node

Flow graph

nodes

Cont….

Three edge from node 36,39 and 42 are terminated heren2443

Sequential nodesn2340,41,42

Sequential nodesn2238,39

Decision node, if true go to 38 else go to 40n2137

Three edge from node 29,32 and 35 are terminated heren2036

Sequential nodesn1933,34,35

114Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Decision node, if true go to 45 else go to 82. Three edges from 18,43 & 10

are also terminated here.

n2544

Decision node, if true go to 46 else go to 77n2645

Decision node, if true go to 47 else go to 51n2746

Intermediate node with one input edge & one output egen3052

Decision node, if true go to 52 else go to 68n2951

Sequential nodesn2847,48,49,50

RemarksDD Path graph
corresponding

node

Flow graph
nodes

Cont….

Decision node, if true go to 60 else go to 63. Two edge from nodes 58 and

53 are terminated.

n3659

Two edge from node 57 and 55 are terminated heren3558

Sequential nodesn3456,57

Decision node, if true go to 56 else go to 58n3355

Intermediate noden3254

Decision node, if true go to 54 else go to 59n3153

115Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Sequential nodesn3760,61,62

Sequential nodesn3863,64,65,66

Two edge from node 62 and 66 are terminated heren3967

Decision node, if true go to 69 else go to 72n4068

Sequential nodesn4169,70,71

Sequential nodesn4272,73,74,75

RemarksDD Path graph
corresponding

node

Flow graph
nodes

Sequential nodes with exit noden4986,87

Two edges from nodes 81 and 84 are terminated heren4885

Sequential nodesn4782,83,84

Intermediate noden4681

Two edges from nodes 76 & 79 are terminated heren4580

Sequential nodesn4477,78,79

Four edges from nodes 50, 67, 71 and 75 are terminated here.n4376

116Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Fig. 17: DD path graph
of previous date

problem

117Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Fig. 18: Independent paths of previous date problem

118Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Example 8.13

Consider the problem for the determination of the nature of roots of a quadratic

equation. Its input a triple of positive integers (say a,b,c) and value may be from

interval [0,100].

The program is given in fig. 19. The output may have one of the following words:

[Not a quadratic equation; real roots; Imaginary roots; Equal roots]

Draw the flow graph and DD path graph. Also find independent paths from the DD

Path graph.

119Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Cont….

120Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Fig. 19: Code of quadratic equation problem

121Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing
Solution

Fig. 19 (a) : Program flow

graph

122Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Fig. 19 (b) : DD Path graph

123Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Two edges are combined hereF16

Sequential nodeE14,15

Decision nodeD13

Intermediate nodeC12

Decision nodeB11

Sequential nodesA1 to 10

RemarksDD Path graph

corresponding
node

Flow graph

nodes

Cont….

The mapping table for DD path graph is:

Sequential nodeL23,24,25

Decision nodeK22

Sequential nodeJ20,21

Decision nodeI19

Intermediate nodeH18

Two edges are combined and decision nodeG17

124Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Sequential nodes with exit nodeS38,39

Three edges are combined hereR37

Sequential nodeQ34,35,36

Sequential nodeP32,33

Decision nodeO31

Three edges are combinedN30

Sequential nodesM26,27,28,29

RemarksDD Path graph
corresponding

node

Flow graph
nodes

Independent paths are:

(i) ABGOQRS (ii) ABGOPRS

(iii) ABCDFGOQRS (iv) ABCDEFGOPRS

(v) ABGHIJNRS (vi) ABGHIKLNRS

(vi) ABGHIKMNRS

125Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Example 8.14

Consider a program given in Fig.8.20 for the classification of a triangle. Its input is a

triple of positive integers (say a,b,c) from the interval [1,100]. The output may be

[Scalene, Isosceles, Equilateral, Not a triangle].

Draw the flow graph & DD Path graph. Also find the independent paths from the DD

Path graph.

126Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

127Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Fig. 20 : Code of triangle classification problem

128Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Flow graph of
triangle problem is:

Solution :

Fig.8. 20 (a): Program flow graph

129Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

RemarksDD Path graph
corresponding

node

Flow graph
nodes

Cont….

The mapping table for DD path graph is:

Sequential nodes

Decision node

Decision node

Sequential nodes

Two edges are joined here

Sequential nodes

Decision nodes plus joining of two edges

Decision node

Sequential nodes

Decision node

Sequential nodes

Sequential nodes

A

C

D

E

F

H

G

B

I

J

L

K

1 TO 9

10

11

12, 13

14

15, 16, 17

18

19

20, 21

22

23, 24

25, 26, 27

130Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

RemarksDD Path graph

corresponding
node

Flow graph

nodes

Fig. 20 (b): DD Path graph

Decision node

Sequential nodes

Sequential nodes

Sequential nodes with exit node

Three edges are combined here

Three edges are combined here

N

M

O

P

R

Q

28

29

30, 31

32, 33, 34

35

36, 37

131Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Fig. 20 (b): DD Path graph

DD Path graph is given in Fig. 20 (b)

Independent paths are:

(i) ABFGNPQR

(ii) ABFGNOQR

(iii) ABCEGNPQR

(iv) ABCDEGNOQR

(v) ABFGHIMQR

(vi) ABFGHJKMQR

(vii)ABFGHJMQR

132Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Cyclomatic Complexity

McCabe’s cyclomatic metric V(G) = e – n + 2P.

For example, a flow graph shown in in Fig. 21 with entry node ‘a’ and exit node ‘f’.

Fig. 21: Flow graph

133Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

The value of cyclomatic complexity can be calculated as :

V(G) = 9 – 6 + 2 = 5

Here e = 9, n = 6 and P =1

There will be five independent paths for the flow graph illustrated in Fig. 21.

Path 1 : a c f

Path 2 : a b e f

Path 3 : a d c f

Path 4 : a b e a c f or a b e a b e f

Path 5 : a b e b e f

134Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Several properties of cyclomatic complexity are stated below:

1. V(G) ≥1

2. V (G) is the maximum number of independent paths in graph G.

3. Inserting & deleting functional statements to G does not affect V(G).

4. G has only one path if and only if V(G)=1.

5. Inserting a new row in G increases V(G) by unity.

6. V(G) depends only on the decision structure of G.

Software TestingSoftware TestingSoftware TestingSoftware Testing

135Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Fig. 22

The role of P in the complexity calculation V(G)=e-n+2P is required to be understood
correctly. We define a flow graph with unique entry and exit nodes, all nodes
reachable from the entry, and exit reachable from all nodes. This definition would
result in all flow graphs having only one connected component. One could, however,
imagine a main program M and two called subroutines A and B having a flow graph
shown in Fig. 22.

136Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Let us denote the total graph above with 3 connected components as

PneBAMV 2)(+−=∪∪

= 13-13+2*3

= 6

This method with P 1 can be used to calculate the complexity of a
collection of programs, particularly a hierarchical nest of subroutines.

≠

137Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

KnepneCV
k

i

k

i

ii 22)(
1 1

+−=+−= ∑ ∑
= =

)()2(
11

∑∑
==

=+−=
k

i

i

k

i

ii CVne

Notice that . In general, the
complexity of a collection C of flow graphs with K connected components is
equal to the summation of their complexities. To see this let Ci,1 ≤ I ≤ K

denote the k distinct connected component, and let ei and ni be the number of edges

and nodes in the ith-connected component. Then

6)()()()(=++=∪∪ BVAVMVBAMV

138Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Two alternate methods are available for the complexity calculations.

1. Cyclomatic complexity V(G) of a flow graph G is equal to the number of
predicate (decision) nodes plus one.

V(G)= +1

Where is the number of predicate nodes contained in the flow graph
G.

2. Cyclomatic complexity is equal to the number of regions of the flow
graph.

∏

∏

139Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing
Example 8.15

Consider a flow graph given in Fig. 23 and calculate the cyclomatic
complexity by all three methods.

Fig. 23

140Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Solution

Cyclomatic complexity can be calculated by any of the three methods.

1. V(G) = e – n + 2P

= 13 – 10 + 2 = 5

2. V(G) = π + 1

= 4 + 1 = 5

3. V(G) = number of regions

= 5

Therefore, complexity value of a flow graph in Fig. 23 is 5.

141Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Example 8.16

Consider the previous date program with DD path graph given in Fig. 17.
Find cyclomatic complexity.

142Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Solution

Number of edges (e) = 65

Number of nodes (n) =49

(i) V(G) = e – n + 2P = 65 – 49 + 2 = 18

(ii) V(G) = π + 1 = 17 + 1 = 18

(iii) V(G) = Number of regions = 18

The cyclomatic complexity is 18.

143Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Example 8.17

Consider the quadratic equation problem given in example 8.13 with its DD
Path graph. Find the cyclomatic complexity:

144Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Solution

Number of nodes (n) = 19

Number of edges (e) = 24

(i) V(G) = e – n + 2P = 24 – 19 + 2 = 7

(ii) V(G) = π + 1 = 6 + 1 = 7

(iii)V(G) = Number of regions = 7

Hence cyclomatic complexity is 7 meaning thereby, seven
independent paths in the DD Path graph.

145Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Example 8.18

Consider the classification of triangle problem given in example 8.14. Find
the cyclomatic complexity.

146Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Solution

Number of edges (e) = 23

Number of nodes (n) =18

(i) V(G) = e – n + 2P = 23 – 18 + 2 = 7

(ii) V(G) = π + 1 = 6 + 1 = 7

(iii)V(G) = Number of regions = 7

The cyclomatic complexity is 7. Hence, there are seven independent paths
as given in example 8.14.

147Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Graph Matrices

Fig. 24 (a): Flow graph and graph matrices

A graph matrix is a square matrix with one row and one column for every node in the

graph. The size of the matrix (i.e., the number of rows and columns) is equal to the

number of nodes in the flow graph. Some examples of graphs and associated

matrices are shown in fig. 24.

148Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Fig. 24 (b): Flow graph and graph matrices

149Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Fig. 24 (c): Flow graph and graph matrices

150Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Fig. 25 : Connection matrix of flow graph shown in Fig. 24 (c)

151Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

The square matrix represent that there are two path ab and cd from node 1 to

node 2.

152Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing
Example 8.19

Consider the flow graph shown in the Fig. 26 and draw the graph & connection

matrices. Find out cyclomatic complexity and two / three link paths from a node to

any other node.

Fig. 26 : Flow graph

153Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Solution

The graph & connection matrices are given below :

To find two link paths, we have to generate a square of graph matrix [A] and for three

link paths, a cube of matrix [A] is required.

154Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

155Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Data Flow Testing

As we know, variables are defined and referenced throughout the program. We

may have few define/ reference anomalies:

Data flow testing is another from of structural testing. It has nothing to do with data

flow diagrams.

i. Statements where variables receive values.

ii. Statements where these values are used or referenced.

i. A variable is defined but not used/ referenced.

ii. A variable is used but never defined.

iii. A variable is defined twice before it is used.

156Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Definitions

(i) Defining Node: Node n ϵ G(P) is a defining node of the variable v ϵ V,

written as DEF (v, n), if the value of the variable v is defined at the statement

fragment corresponding to node n.

The definitions refer to a program P that has a program graph G(P) and a set of

program variables V. The G(P) has a single entry node and a single exit node. The

set of all paths in P is PATHS(P)

(ii) Usage Node: Node n ϵ G(P) is a usage node of the variable v ϵ V, written as

USE (v, n), if the value of the variable v is used at statement fragment

corresponding to node n. A usage node USE (v, n) is a predicate use (denote

as p) if statement n is a predicate statement otherwise USE (v, n) is a

computation use (denoted as c).

157Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(iii) Definition use: A definition use path with respect to a variable v (denoted

du-path) is a path in PATHS(P) such that, for some v ϵ V, there are define and

usage nodes DEF(v, m) and USE(v, n) such that m and n are initial and final
nodes of the path.

(iv) Definition clear : A definition clear path with respect to a variable v (denoted

dc-path) is a definition use path in PATHS(P) with initial and final nodes DEF

(v, m) and USE (v, n), such that no other node in the path is a defining node of v.

Software TestingSoftware TestingSoftware TestingSoftware Testing

The du-paths and dc-paths describe the flow of data across source statements from

points at which the values are defined to points at which the values are used. The

du-paths that are not definition clear are potential trouble spots.

158Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Fig. 27 : Steps for data flow testing

Hence, our objective is to find all du-paths and then identity those du-paths which are

not dc-paths. The steps are given in Fig. 27. We may like to generate specific test

cases for du-paths that are not dc-paths.

159Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Example 8.20

Consider the program of the determination of the nature of roots of a quadratic

equation. Its input is a triple of positive integers (say a,b,c) and values for each of

these may be from interval [0,100]. The program is given in Fig. 19. The output may

have one of the option given below:

(i) Not a quadratic program

(ii) real roots

(iii) imaginary roots

(iv) equal roots

(v) invalid inputs

Find all du-paths and identify those du-paths that are definition clear.

160Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Solution

Step I: The program flow graph is given in Fig. 19 (a). The variables used in the

program are a,b,c,d, validinput, D.

Used at nodeDefined at nodeVariable

a

b

c

d

6

8

10

18

11,13,18,20,24,27,28

11,18,20,24,28

11,18

19,22,23,27

D

Validinput

23, 27

3, 12, 14

24,28

17,31

Step III: Define/use nodes for all variables are given below:

Step II: DD Path graph is given in Fig. 19(b). The cyclomatic complexity of this graph

is 7 indicating there are seven independent paths.

161Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Step IV: The du-paths are identified and are named by their beginning and ending

nodes using Fig. 19 (a).

Definition clear ?Path (beginning, end) nodesVariable

a

b

6, 11

6, 13

6, 18

6, 20

6, 24

6, 27

6, 28

Yes

Yes

Yes

Yes

Yes

Yes

Yes

8, 11

8, 18

8, 20

8, 24

8, 28

Yes

Yes

Yes

Yes

Yes

162Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Definition clear ?Path (beginning, end) nodesVariable

3, 17

3, 31

12, 17

12, 31

14, 17

14, 31

no

no

no

no

yes

yes

23, 24

23, 28

27, 24

27, 28

18, 19

18, 22

18, 23

18, 27

Yes

Yes

Yes

Yes

Yes

Path not possible

Path not possible

Yes

10, 11

10, 18

Yes

Yes
c

d

D

validinput

163Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Example 8.21

Consider the program given in Fig. 20 for the classification of a triangle. Its
input is a triple of positive integers (say a,b,c) from the interval [1,100]. The
output may be:

[Scalene, Isosceles, Equilateral, Not a triangle, Invalid inputs].

Find all du-paths and identify those du-paths that are definition clear.

164Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Solution

Step I: The program flow graph is given in Fig. 20 (a). The variables used in
the program are a,b,c, valid input.

Step III: Define/use nodes for all variables are given below:

Used at nodeDefined at nodeVariable

a

b

c

valid input

6

7

9

3, 13, 16

10, 11, 19, 22

10, 11, 19, 22

10, 11, 19, 22

18, 29

Step II: DD Path graph is given in Fig. 20(b). The cyclomatic complexity of
this graph is 7 and thus, there are 7 independent paths.

165Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Definition clear ?Path (beginning, end) nodesVariable

a

b

5, 10

5, 11

5, 19

5, 22

Yes

Yes

Yes

Yes

7, 10

7, 11

7, 19

7, 22

Yes

Yes

Yes

Yes

Step IV: The du-paths are identified and are named by their beginning and ending

nodes using Fig. 20 (a).

166Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Definition clear ?Path (beginning, end) nodesVariable

3, 18

3, 29

12, 18

12, 29

16, 18

16, 29

no

no

no

no

Yes

Yes

9, 10

9, 11

9, 19

9, 22

Yes

Yes

Yes

Yes

c

valid input

Hence total du-paths are 18 out of which four paths are not definition clear

167Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Mutation Testing

Mutation testing is a fault based technique that is similar to fault seeding, except that

mutations to program statements are made in order to determine properties about

test cases. it is basically a fault simulation technique.

Multiple copies of a program are made, and each copy is altered; this altered copy is

called a mutant. Mutants are executed with test data to determine whether the test

data are capable of detecting the change between the original program and the

mutated program.

A mutant that is detected by a test case is termed “killed” and the goal of mutation

procedure is to find a set of test cases that are able to kill groups of mutant

programs.

168Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

When we mutate code there needs to be a way of measuring the degree to which the

code has been modified. For example, if the original expression is x+1 and the

mutant for that expression is x+2, that is a lesser change to the original code than a

mutant such as (c*22), where both the operand and the operator are changed. We

may have a ranking scheme, where a first order mutant is a single change to an

expression, a second order mutant is a mutation to a first order mutant, and so on.

High order mutants becomes intractable and thus in practice only low order mutants

are used.

One difficulty associated with whether mutants will be killed is the problem of

reaching the location; if a mutant is not executed, it cannot be killed. Special test

cases are to be designed to reach a mutant. For example, suppose, we have the

code.

Read (a,b,c);

If(a>b) and (b=c) then

x:=a*b*c; (make mutants; m1, m2, m3 …….)

169Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

To execute this, input domain must contain a value such that a is greater than b and

b equals c. If input domain does not contain such a value, then all mutants made at

this location should be considered equivalent to the original program, because the

statement x:=a*b*c is dead code (code that cannot be reached during execution). If

we make the mutant x+y for x+1, then we should take care about the value of y

which should not be equal to 1 for designing a test case.

The manner by which a test suite is evaluated (scored) via mutation testing is as

follows: for a specified test suite and a specific set of mutants, there will be three

types of mutants in the code i.e., killed or dead, live, equivalent. The sum of the

number of live, killed, and equivalent mutants will be the total number of mutants

created. The score associated with a test suite T and mutants M is simply.

%100
##

#
×

− equivalenttotal

killed

170Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing
Levels of Testing

There are 3 levels of testing:

i. Unit Testing

ii. Integration Testing

iii. System Testing

171Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

There are number of reasons in support of unit testing than testing the entire product.

Unit Testing

Software TestingSoftware TestingSoftware TestingSoftware Testing

1. The size of a single module is small enough that we can locate an error
fairly easily.

2. The module is small enough that we can attempt to test it in some
demonstrably exhaustive fashion.

3. Confusing interactions of multiple errors in widely different parts of the
software are eliminated.

172Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Stubs serve to replace modules that are subordinate to (called by) the module to be

tested. A stub or dummy subprogram uses the subordinate module’s interface, may

do minimal data manipulation, prints verification of entry, and returns.

This overhead code, called scaffolding represents effort that is import to testing, but

does not appear in the delivered product as shown in Fig. 29.

Software TestingSoftware TestingSoftware TestingSoftware Testing

There are problems associated with testing a module in isolation. How do we run a

module without anything to call it, to be called by it or, possibly, to output

intermediate values obtained during execution? One approach is to construct an

appropriate driver routine to call if and, simple stubs to be called by it, and to insert

output statements in it.

173Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Fig. 29 : Scaffolding required testing a program unit (module)

174Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

The purpose of unit testing is to determine that each independent module is

correctly implemented. This gives little chance to determine that the interface
between modules is also correct, and for this reason integration testing must be

performed. One specific target of integration testing is the interface: whether

parameters match on both sides as to type, permissible ranges, meaning and
utilization.

Integration Testing

Software TestingSoftware TestingSoftware TestingSoftware Testing

175Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Fig. 30 : Three different integration approaches

176Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Of the three levels of testing, the system level is closet to everyday experiences.

We test many things; a used car before we buy it, an on-line cable network
service before we subscribe, and so on. A common pattern in these familiar

forms is that we evaluate a product in terms of our expectations; not with

respect to a specification or a standard. Consequently, goal is not to find faults,
but to demonstrate performance. Because of this we tend to approach system

testing from a functional standpoint rather than from a structural one. Since it is
so intuitively familiar, system testing in practice tends to be less formal than it

might be, and is compounded by the reduced testing interval that usually

remains before a delivery deadline.

System Testing

Software TestingSoftware TestingSoftware TestingSoftware Testing

Petschenik gives some guidelines for choosing test cases during system testing.

177Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

During system testing, we should evaluate a number of attributes of the
software that are vital to the user and are listed in Fig. 31. These represent the

operational correctness of the product and may be part of the software
specifications.

Software TestingSoftware TestingSoftware TestingSoftware Testing

Usable

Secure

Compatible

Dependable

Documented

Is the product convenient, clear, and predictable?

Is access to sensitive data restricted to those with authorization?

Will the product work correctly in conjunction with existing data,

software, and procedures?

Do adequate safeguards against failure and methods for recovery

exist in the product?

Are manuals complete, correct, and understandable?

Fig. 31 : Attributes of software to be tested during system testing

178Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

o It refers to test the software as a complete product.

o This should be done after unit & integration testing.

o Alpha, beta & acceptance testing are nothing but the various ways of involving

customer during testing.

Validation Testing

179Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

o IEEE has developed a standard (IEEE standard 1059-1993) entitled “ IEEE guide

for software verification and validation “ to provide specific guidance about

planning and documenting the tasks required by the standard so that the

customer may write an effective plan.

o Validation testing improves the quality of software product in terms of functional

capabilities and quality attributes.

Validation Testing

180Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

The Art of Debugging

The goal of testing is to identify errors (bugs) in the program. The process of
testing generates symptoms, and a program’s failure is a clear symptom of the

presence of an error. After getting a symptom, we begin to investigate the cause
and place of that error. After identification of place, we examine that portion to

identify the cause of the problem. This process is called debugging.

Debugging Techniques

Pressman explained few characteristics of bugs that provide some clues.

1. “The symptom and the cause may be geographically remote. That is, the

symptom may appear in one part of a program, while the cause may actually be

located in other part. Highly coupled program structures may complicate this

situation.

2. The symptom may disappear (temporarily) when another error is corrected.

181Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

3. The symptom may actually be caused by non errors (e.g. round off inaccuracies).

4. The symptom may be caused by a human error that is not easily traced.

5. The symptom may be a result of timing problems rather than processing

problems.

6. It may be difficult to accurately reproduce input conditions (e.g. a real time

application in which input ordering is indeterminate).

7. The symptom may be intermittent. This is particularly common in embedded

system that couple hardware with software inextricably.

8. The symptom may be due to causes that are distributed across a number of tasks

running on different processors”.

Software TestingSoftware TestingSoftware TestingSoftware Testing

182Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Induction approach

Software TestingSoftware TestingSoftware TestingSoftware Testing

� Locate the pertinent data

� Organize the data

� Devise a hypothesis

� Prove the hypothesis

183Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Fig. 32 : The inductive debugging process

184Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Deduction approach

Software TestingSoftware TestingSoftware TestingSoftware Testing

� Enumerate the possible causes or hypotheses

� Use the data to eliminate possible causes

� Refine the remaining hypothesis

� Prove the remaining hypothesis

185Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Fig. 33 : The inductive debugging process

186Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Testing Tools

One way to improve the quality & quantity of testing is to make the process as

pleasant as possible for the tester. This means that tools should be as concise,

powerful & natural as possible.

The two broad categories of software testing tools are :

� Static

� Dynamic

187Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

There are different types of tools available and some are listed below:

1. Static analyzers, which examine programs systematically and automatically.

2. Code inspectors, who inspect programs automatically to make sure they adhere

to minimum quality standards.

3. standards enforcers, which impose simple rules on the developer.

4. Coverage analysers, which measure the extent of coverage.

5. Output comparators, used to determine whether the output in a program is

appropriate or not.

188Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

6. Test file/ data generators, used to set up test inputs.

7. Test harnesses, used to simplify test operations.

8. Test archiving systems, used to provide documentation about programs.

189Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

8.1 Software testing is:

(a) the process of demonstrating that errors are not present

(b) the process of establishing confidence that a program does what it is supposed
to do

(c) the process of executing a program to show it is working as per specifications

(d) the process of executing a program with the intent of finding errors

8.2 Software mistakes during coding are known as:

(a) failures (b) defects

(c) bugs (d) errors

8.3 Functional testing is known as:

(a) Structural testing (b) Behavior testing

(c) Regression testing (d) None of the above

8.4 For a function of n variables, boundary value analysis yields:

(a) 4n+3 test cases (b) 4n+1 test cases

(c) n+4 test cases (d) None of the above

Multiple Choice Questions
Note: Choose most appropriate answer of the following questions:

190Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

8.7 Regression testing is primarily related to:

(a) Functional testing (b) Data flow testing

(c) Development testing (d) Maintenance testing

Multiple Choice Questions

8.8 A node with indegree=0 and out degree ≠ 0 is called

(a) Source node (b) Destination node

(c) Transfer node (d) None of the above

8.5 For a function of two variables, how many cases will be generated by
robustness testing?

(a) 9 (b) 13

(c) 25 (d) 42

8.6 For a function of n variables robustness testing of boundary value analysis yields:

(a) 4n+1 (b) 4n+3

(c) 6n+1 (d) None of the above

8.9 A node with indegree ≠ 0 and out degree=0 is called

(a) Source node (b) Predicate node

(c) Destination node (d) None of the above

191Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

8.10 A decision table has

(a) Four portions (b) Three portions

(c) Five portions (d) Two portions

Multiple Choice Questions

8.11 Beta testing is carried out by

(a) Users (b) Developers

(c) Testers (d) All of the above

8.12 Equivalence class partitioning is related to

(a) Structural testing (b) Blackbox testing

(c) Mutation testing (d) All of the above

8.13 Cause effect graphing techniques is one form of

(a) Maintenance testing (b) Structural testing

(c) Function testing (d) Regression testing

8.14 During validation

(a) Process is checked (b) Product is checked

(c) Developer’s performance is evaluated (d) The customer checks the product

192Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

8.15 Verification is

(a) Checking the product with respect to customer’s expectation

(b) Checking the product with respect to specifications

(c) Checking the product with respect to the constraints of the project

(d) All of the above

8.16 Validation is

(a) Checking the product with respect to customer’s expectation

(b) Checking the product with respect to specifications

(c) Checking the product with respect to the constraints of the project

(d) All of the above

8.17 Alpha testing is done by

(a) Customer (b) Tester

(c) Developer (d) All of the above

Multiple Choice Questions

8.18 Site for Alpha testing is

(a) Software company (b) Installation place

(c) Any where (d) None of the above

193Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Multiple Choice Questions

8.19 Site for Beta testing is

(a) Software company (b) User’s site

(c) Any where (d) All of the above

8.20 Acceptance testing is done by

(a) Developers (b) Customers

(c) Testers (d) All of the above

8.21 One fault may lead to

(a) One failure (b) No failure

(c) Many failure (d) All of the above

8.22 Test suite is

(a) Set of test cases (b) Set of inputs

(c) Set of outputs (d) None of the above

8.23 Behavioral specification are required for:

(a) Modeling (b) Verification

(c) Validation (d) None of the above

194Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

8.24 During the development phase, the following testing approach is not adopted

(a) Unit testing (b) Bottom up testing

(c) Integration testing (d) Acceptance testing

8.25 Which is not a functional testing technique?

(a) Boundary value analysis (b) Decision table

(c) Regression testing (d) None of the above

Multiple Choice Questions

8.26 Decision table are useful for describing situations in which:

(a) An action is taken under varying sets of conditions.

(b) Number of combinations of actions are taken under varying sets of conditions

(c) No action is taken under varying sets of conditions

(d) None of the above

8.27 One weakness of boundary value analysis and equivalence partitioning is

(a) They are not effective

(b) They do not explore combinations of input circumstances

(c) They explore combinations of input circumstances

(d) None of the above

195Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Multiple Choice Questions

8.28 In cause effect graphing technique, cause & effect are related to

(a) Input and output (b) Output and input

(c) Destination and source (d) None of the above

8.29 DD path graph is called as

(a) Design to Design Path graph (b) Defect to Defect Path graph

(c) Destination to Destination Path graph (d) Decision to decision Path graph

8.31 Cyclomatic complexity is developed by

(a) B.W.Boehm (b) T.J.McCabe

(c) B.W.Lettlewood (d) Victor Basili

8.30 An independent path is

(a) Any path through the DD path graph that introduce at least one new set of
processing statements or new conditions

(b) Any path through the DD path graph that introduce at most one new set of
processing statements or new conditions

(c) Any path through the DD path graph that introduce at one and only one new
set of processing statements or new conditions

(d) None of the above

196Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Multiple Choice Questions

8.32 Cyclomatic complexity is denoted by

(a) V(G)=e-n+2P (b) V(G)= ∏ +1

(c) V(G)=Number of regions of the graph (d) All of the above

8.33 The equation V(G)= ∏ +1 of cyclomatic complexity is applicable only if
every predicate node has

(a) two outgoing edges (b) three or more outgoing edges

(c) no outgoing edges (d) none of the above

8.34 The size of the graph matrix is

(a) Number of edges in the flow graph

(b) Number of nodes in the flow graph

(c) Number of paths in the flow graph

(d) Number of independent paths in the flow graph

197Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Multiple Choice Questions

8.35 Every node is represented by

(a) One row and one column in graph matrix

(b) Two rows and two columns in graph matrix

(c) One row and two columns in graph matrix

(d) None of the above

8.36 Cyclomatic complexity is equal to

(a) Number of independent paths (b) Number of paths

(c) Number of edges (d) None of the above

8.37 Data flow testing is related to

(a) Data flow diagrams (b) E-R diagrams

(c) Data dictionaries (d) none of the above

8.38 In data flow testing, objective is to find

(a) All dc-paths that are not du-paths (b) All du-paths

(c) All du-paths that are not dc-paths (d) All dc-paths

198Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Multiple Choice Questions

8.39 Mutation testing is related to

(a) Fault seeding (b) Functional testing

(c) Fault checking (d) None of the above

8.40 The overhead code required to be written for unit testing is called

(a) Drivers (b) Stubs

(c) Scaffolding (d) None of the above

8.41 Which is not a debugging techniques

(a) Core dumps (b) Traces

(c) Print statements (d) Regression testing

8.42 A break in the working of a system is called

(a) Defect (b) Failure

(c) Fault (d) Error

8.43 Alpha and Beta testing techniques are related to

(a) System testing (b) Unit testing

(c) acceptance testing (d) Integration testing

199Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Multiple Choice Questions

8.44 Which one is not the verification activity

(a) Reviews (b) Path testing

(c) Walkthrough (d) Acceptance testing

8.45 Testing the software is basically

(a) Verification (b) Validation

(c) Verification and validation (d) None of the above

8.46 Integration testing techniques are

(a) Topdown (b) Bottom up

(c) Sandwich (d) All of the above

8.47 Functionality of a software is tested by

(a) White box testing (b) Black box testing

(c) Regression testing (d) None of the above

8.48 Top down approach is used for

(a) Development (b) Identification of faults

(c) Validation (d) Functional testing

200Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Multiple Choice Questions

8.49 Thread testing is used for testing

(a) Real time systems (b) Object oriented systems

(c) Event driven systems (d) All of the above

8.50 Testing of software with actual data and in the actual environment is called

(a) Alpha testing (b) Beta testing

(c) Regression testing (d) None of the above

201Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

8.1 What is software testing? Discuss the role of software testing during
software life cycle and why is it so difficult?

8.2 Why should we test? Who should do the testing?

8.3 What should we test? Comment on this statement. Illustrate the
importance of testing

8.4 Defined the following terms:

(i) fault (ii) failure

(iii) bug (iv) mistake

8.5 What is the difference between

(i) Alpha testing & beta testing

(ii) Development & regression testing

(iii) Functional & structural testing

8.6 Discuss the limitation of testing. Why do we say that complete testing is
impossible?

202Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

8.7 Briefly discuss the following

(i) Test case design, Test & Test suite

(ii) Verification & Validation

(iii) Alpha, beta & acceptance testing

8.8 Will exhaustive testing (even if possible for every small programs)
guarantee that the program is 100% correct?

8.9 Why does software fail after it has passed from acceptance testing?
Explain.

8.10 What are various kinds of functional testing? Describe any one in detail.

8.11 What is a software failure? Explain necessary and sufficient conditions
for software failure. Mere presence of faults means software failure. Is it
true? If not, explain through an example, a situation in which a failure
will definitely occur.

8.12 Explain the boundary value analysis testing techniques with the help of
an example.

203Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

8.13 Consider the program for the determination of next date in a calendar.
Its input is a triple of day, month and year with the following range

1 ≤ month ≤ 12

1 ≤ day ≤ 31

1900 1 ≤ year ≤ 2025

The possible outputs would be Next date or invalid date. Design
boundary value, robust and worst test cases for this programs.

8.14 Discuss the difference between worst test case and adhoc test case
performance evaluation by means of testing. How can we be sure that the
real worst case has actually been observed?

8.15 Describe the equivalence class testing method. Compare this with
boundary value analysis techniques

204Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

8.16 Consider a program given below for the selection of the largest of
numbers

205Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

(i) Design the set of test cases using boundary value analysis technique and
equivalence class testing technique.

(ii) Select a set of test cases that will provide 100% statement coverage.

(iii) Develop a decision table for this program.

8.17 Consider a small program and show, why is it practically impossible to
do exhaustive testing?

8.18 Explain the usefulness of decision table during testing. Is it really
effective? Justify your answer.

8.19 Draw the cause effect graph of the program given in exercise 8.16.

8.20 Discuss cause effect graphing technique with an example.

8.21 Determine the boundary value test cases the extended triangle problem
that also considers right angle triangles.

206Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

8.22 Why does software testing need extensive planning? Explain.

8.23 What is meant by test case design? Discuss its objectives and indicate
the steps involved in test case design.

8.24 Let us consider an example of grading the students in an academic
institution. The grading is done according to the following rules:

Generate test cases using equivalence class testing technique

207Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

8.25 Consider a program to determine whether a number is ‘odd’ or ‘even’
and print the message

NUMBER IS EVEN

Or

NUMBER IS ODD

The number may be any valid integer.

Design boundary value and equivalence class test cases.

8.26 Admission to a professional course is subject to the following
conditions:

208Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

If aggregate marks of an eligible candidate are more than 225, he/she will be
eligible for honors course, otherwise he/she will be eligible for pass course.
The program reads the marks in the three subjects and generates the
following outputs:

(a) Not Eligible

(b) Eligible to Pass Course

(c) Eligible to Honors Course

Design test cases using decision table testing technique.

8.27 Draw the flow graph for program of largest of three numbers as shown
in exercise 8.16. Find out all independent paths that will guarantee that
all statements in the program have been tested.

8.28 Explain the significance of independent paths. Is it necessary to look for
a tool for flow graph generation, if program size increases beyond 100
source lines?

8.29 Discuss the structure testing. How is it different form functional testing?

209Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

8.30 What do you understand by structural testing? Illustrate important
structural testing techniques.

8.31 Discuss the importance of path testing during structural testing.

8.32 What is cyclomatic complexity? Explain with the help of an example.

8.33 Is it reasonable to define “thresholds” for software modules? For
example, is a module acceptable if its V(G) ≤ 10? Justify your answer.

8.34 Explain data flow testing. Consider an example and show all “du” paths.
Also identify those “du” paths that are not “dc” paths.

8.35 Discuss the various steps of data flow testing.

8.36 If we perturb a value, changing the current value of 100 by 1000, what
is the effect of this change? What precautions are required while
designing the test cases?

210Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

8.38 What are the objectives of testing? Why is the psychology of a testing
person important?

8.39 Why does software fail after it has passed all testing phases? Remember,
software, unlike hardware does not wear out with time.

8.43 Peteschenik suggested that a different team than the one that does
integration testing should carry out system testing. What are some good
reasons for this?

8.40 What is the purpose of integration testing? How is it done?

8.41 Differentiate between integration testing and system testing.

8.42 Is unit testing possible or even desirable in all circumstances? Provide
examples to Justify your answer?

8.37 What is the difference between white and black box testing? Is
determining test cases easier in back or white box testing? Is it correct to
claim that if white box testing is done properly, it will achieve close to
100% path coverage?

211Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

8.45 How can design attributes facilitate debugging?

8.46 List some of the problem that could result from adding debugging
statements to code. Discuss possible solutions to these problems.

8.47 What are various debugging approaches? Discuss them with the help of
examples.

8.48 Researchers and practitioners have proposed several mixed testing
strategies intended to combine advantages of various techniques
discussed in this chapter. Propose your own combination, perhaps also
using some kind of random testing at selected points.

8.44 Test a program of your choice, and uncover several program errors.
Localise the main route of these errors, and explain how you found the
courses. Did you use the techniques of Table 8? Explain why or why not.

8.49 Design a test set for a spell checker. Then run it on a word processor
having a spell checker, and report on possible inadequacies with respect
to your requirements.

212Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

8.50 4 GLs represent a major step forward in the development of automatic
program generation. Explain the major advantage & disadvantage in the
use of 4 GLs. What are the cost impact of applications of testing and how
do you justify expenditures for these activities.

