
1Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

2Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

Basic Concepts

There are three phases in the life of any hardware component i.e.,

burn-in, useful life & wear-out.

Failure rate increase in wear-out phase due to wearing out/aging of

components. The best period is useful life period. The shape of this
curve is like a “bath tub” and that is why it is known as bath tub

curve. The “bath tub curve” is given in Fig.7.1.

During useful life period, failure rate is approximately constant.

In burn-in phase, failure rate is quite high initially, and it starts

decreasing gradually as the time progresses.

3Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Fig. 7.1: Bath tub curve of hardware reliability.

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

4Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Fig. 7.2: Software reliability curve (failure rate versus time)

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

We do not have wear out phase in software. The expected curve for

software is given in fig. 7.2.

5Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

� change in environment

� change in infrastructure/technology

� major change in requirements

� increase in complexity

� extremely difficult to maintain

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

Software may be retired only if it becomes obsolete. Some of

contributing factors are given below:

� deterioration in structure of the code

� slow execution speed

� poor graphical user interfaces

6Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

What is Software Reliability?

“Software reliability means operational reliability. Who cares how

many bugs are in the program?

As per IEEE standard: “Software reliability is defined as the ability of

a system or component to perform its required functions under

stated conditions for a specified period of time”.

7Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

“It is the probability of a failure free operation of a program for a

specified time in a specified environment”.

Software reliability is also defined as the probability that a software

system fulfills its assigned task in a given environment for a
predefined number of input cases, assuming that the hardware and

the inputs are free of error.

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

8Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

� Failures and Faults

A fault is the defect in the program that, when executed under

particular conditions, causes a failure.

The execution time for a program is the time that is actually spent by

a processor in executing the instructions of that program. The
second kind of time is calendar time. It is the familiar time that we

normally experience.

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

9Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

There are four general ways of characterising failure occurrences in

time:

1. time of failure,

2. time interval between failures,

3. cumulative failure experienced up to a given time,

4. failures experienced in a time interval.

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

10Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

2825015

2522214

2819713

2616912

1914311

2012410

181049

15868

14717

12576

9455

11364

7253

10182

881

Failure interval (sec)Failure Time (sec)Failure Number

Table 7.1: Time based failure specification

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

11Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

114240

113210

112180

211150

19120

2890

3660

3330

Failure in interval (30 sec)Cumulative FailuresTime (sec)

Table 7.2: Failure based failure specification

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

12Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

0.130.029

0.160.038

ProbabilityValue of random
variable (failures
in time period)

0.120.047

0.090.056

0.070.085

0.050.114

0.040.163

0.030.222

0.020.181

0.010.100

Elapsed time tB = 5 hrElapsed time tA = 1 hr

Table 7.3: Probability distribution at times tA and tB

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

13Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

ProbabilityValue of random
variable (failures
in time period)

7.773.04Mean failures

0.01015

0.02014

0.03013

0.05012

0.07011

0.100.0110

Elapsed time tB = 5 hrElapsed time tA = 1 hr

Table 7.3: Probability distribution at times tA and tB

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

14Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Failure behavior is affected by two principal factors:

A random process whose probability distribution varies with time to

time is called non-homogeneous. Most failure processes during test
fit this situation. Fig. 7.3 illustrates the mean value and the related

failure intensity functions at time tA and tB. Note that the mean

failures experienced increases from 3.04 to 7.77 between these two

points, while the failure intensity decreases.

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

� the number of faults in the software being executed.

� the execution environment or the operational profile of
execution.

15Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Fig. 7.3: Mean Value & failure intensity functions.

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

16Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Environment

The environment is described by the operational profile. The

proportion of runs of various types may vary, depending on the

functional environment. Examples of a run type might be:

1. a particular transaction in an airline reservation system or a
business data processing system,

2. a specific cycle in a closed loop control system (for

example, in a chemical process industry),

3. a particular service performed by an operating system for a

user.

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

17Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

The run types required of the program by the environment can be

viewed as being selected randomly. Thus, we define the operational

profile as the set of run types that the program can execute along

with possibilities with which they will occur. In fig. 7.4, we show two

of many possible input states A and B, with their probabilities of
occurrence.

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

The part of the operational profile for just these two states is shown

in fig. 7.5. A realistic operational profile is illustrated in fig.7.6.

18Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Fig. 7.4: Input Space

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

19Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Fig. 7.5: Portion of operational profile

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

20Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

Fig. 7.6: Operational profile

21Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

Fig. 7.7: Reliability and failure intensity

Fig.7.7 shows how failure intensity and reliability typically vary

during a test period, as faults are removed.

22Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

There are at least four other ways in which software reliability

measures can be of great value to the software engineer, manager
or user.

1. you can use software reliability measures to evaluate software

engineering technology quantitatively.

2. software reliability measures offer you the possibility of

evaluating development status during the test phases of a

project.

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

Uses of Reliability Studies

23Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

3. one can use software reliability measures to monitor the

operational performance of software and to control new features
added and design changes made to the software.

4. a quantitative understanding of software quality and the various

factors influencing it and affected by it enriches into the

software product and the software development process.

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

24Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Quality

Different people understand different meanings of quality like:

� conformance to requirements

� fitness for the purpose

� level of satisfaction

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

25Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

26Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Fig 7.8: Software quality attributes

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

27Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

The extent of effort required to learn, operate and

understand the functions of the software

Usability7

The extent to which an error is traceable in order to

fix it.

Traceability6

The extent to which a software is simple in its

operations.

Simplicity5

The extent to which a software tolerates the

unexpected problems.

Robustness4

The extent to which a software is consistent and give

results with precision.

Consistency &

precision

3

The extent to which a software meets its

specifications.

Correctness2

The extent to which a software performs its intended

functions without failure.

Reliability1

28Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

The effort required to locate and fix an error during

maintenance phase.

Maintainability14

The effort required to test a software to ensure that it

performs its intended functions.

Testability13

The amount of computing resources and code required

by software to perform a function.

Efficiency12

The extent to which a software has specified functions.Completeness11

The extent to which a software is in conformity of

operational environment.

Conformity of

operational

environment

10

The extent to which documents are clearly & accurately

written.

Clarity &

Accuracy of

documentation

9

Meeting specifications with precision.Accuracy8

29Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

The effort required to transfer a program from one

platform to another platform.

Portability20

The extent to which a software is expandable without

undesirable side effects.

Expandability19

The effort required to modify a software during

maintenance phase.

Modifiability18

The extent to which a software is adaptable to new

platforms & technologies.

Adaptability17

The extent to which a software is readable in order to

understand.

Readability16

It is the extent of ease to implement, test, debug and

maintain the software.

Modularity15

Table 7.4: Software quality attributes

30Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Fig 7.9: Software quality factors

� McCall Software Quality Model

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

31Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Factors which are related to the operation of a product are

combined. The factors are:

� Correctness

� Efficiency

� Integrity

� Reliability

� Usability

i. Product Operation

These five factors are related to operational performance,

convenience, ease of usage and its correctness. These factors play

a very significant role in building customer’s satisfaction.

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

32Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

The factors which are required for testing & maintenance are

combined and are given below:

� Maintainability

� Flexibility

� Testability

ii. Product Revision

These factors pertain to the testing & maintainability of software.

They give us idea about ease of maintenance, flexibility and testing
effort. Hence, they are combined under the umbrella of product

revision.

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

33Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

We may have to transfer a product from one platform to an other

platform or from one technology to another technology. The factors

related to such a transfer are combined and given below:

� Portability

� Reusability

� Interoperability

iii. Product Transition

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

34Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Most of the quality factors are explained in table 7.4. The remaining

factors are given in table 7.5.

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

The effort required to couple one system with

another.

Interoperability4

The extent to which a program can be reused in

other applications.

Reusability3

The effort required to modify an operational program.Flexibility2

The extent to which access to software or data by

the unauthorized persons can be controlled.

Integrity1

PurposeQuality FactorsSr.No.

Table 7.5: Remaining quality factors (other are in table 7.4)

35Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Fig 7.10: McCall’s quality model

Quality criteria

36Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Table 7.5(a):

Relation

between quality

factors and

quality criteria

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

37Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

The run-time efficiency of the software.Execution efficiency9

The run time storage requirements of the software.Storage efficiency8

The ease with which software and data can be

checked for compliance with standards or other

requirements.

Access audit7

The provisions for control and protection of the

software and data.

Access control6

It is the indication of I/O rate.I/O rate5

It is related to the I/O volume.I/O volume4

The ease with which inputs and outputs can be

assimilated.

Communicativeness3

The ease with which new users can use the

system.

Training 2

The ease of operation of the software.Operability1

38Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

The degree to which the software provides for

measurements of its use or identification of errors.

Instrumentation17

The compactness of the source code, in terms of lines

of code.

Conciseness16

The ease with which the software can be understood.Simplicity15

The use of uniform design and implementation

techniques and notations throughout a project.

Consistency14

The degree to which continuity of operation is ensured

under adverse conditions.

Error tolerance13

The precision of computations and output.Accuracy12

The degree to which a full implementation of the

required functionality has been achieved.

Completeness11

The ability to link software components to

requirements.

Traceability10

39Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

The use of standard data representations.Data commonality25

The degree to which standard protocols and

interfaces are used.

Communication

commonality

24

The degree to which software is independent of its

environment.

Software system

independence

23

The degree to which software is dependent on its

associated hardware.

Machine

independence

22

The provision of highly independent modules.Modularity21

The degree to which the documents are self

explanatory.

Self-

descriptiveness

20

The breadth of the potential application of software

components.

Generability19

The degree to which storage requirements or

software functions can be expanded.

Expandability18

Table 7.5 (b): Software quality criteria

40Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

� Boehm Software Quality Model

Fig.7.11: The Boehm software quality model

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

41Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

ISO 9126

� Functionality

� Reliability

� Usability

� Efficiency

� Maintainability

� Portability

42Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

Attributes of software that bear on the frequency of failure

by faults in the software

• Maturity

Characteristics relating to capability of software to

maintain its level of performance under stated conditions

for a stated period of time

Reliability

Ability to prevent unauthorized access, whether accidental

or deliberate, to program and data.

• Security

Software’s ability to interact with specified systems• Interoperability

The provision of right or agreed results or effects• Accuracy

The presence and appropriateness of a set of functions for

specified tasks

• Suitability

Characteristics relating to achievement of the basic

purpose for which the software is being engineered

Functionality

Short Description of the Characteristics and the

concerns Addressed by Attributes

Characteristic/

Attribute

43Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

Characteristic related to the relationship between the level

of performance of the software and the amount of

resources used, under stated conditions.

Efficiency

The ease of operation and control by users.• Operability

The effort required for a user to learn its application,

operation, input and output.

• Learnability

The effort required for a user to recognize the logical

concept and its applicability.

• Understandability

Characteristics relating to the effort needed for use, and on

the individual assessment of such use, by a stated implied

set of users.

Usability

Capability and effort needed to reestablish level of

performance and recover affected data after possible

failure.

• Recoverability

Ability to maintain a specified level of performance in cases

of software faults or unexpected inputs

• Fault tolerance

44Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

The effort needed for validating the modified software.• Testability

The risk of unexpected effect of modifications.• Stability

The effort needed for modification, fault removal or for

environmental change.

• Changeability

The effort needed for diagnosis of deficiencies or causes

of failures, or for identification of parts to be modified.

• Analyzability

Characteristics related to the effort needed to make

modifications, including corrections, improvements or

adaptation of software to changes in environment,

requirements and functions specifications.

Maintainability

The amount of resources used and the duration of such

use in performing its function.

• Resource

behavior

The speed of response and processing times and

throughout rates in performing its function.

• Time behavior

45Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

The opportunity and effort of using it in the place of other

software in a particular environment.

• Replaceability

The extent to which it adheres to standards or

conventions relating to portability.

• Conformance

The effort needed to install the software in a specified

environment.

• Installability

The opportunity for its adaptation to different specified

environments.

• Adaptability

Characteristics related to the ability to transfer the

software from one organization or hardware or software

environment to another.

Portability

Table 7.6: Software quality characteristics and attributes – The ISO 9126

view

46Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Fig.7.12: ISO 9126 quality model

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

47Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Reliability Models

� Basic Execution Time Model

−=

0

0 1)(
V

µ
λµλ

Fig.7.13: Failure intensity λ as a

function of µ for basic model

(1)

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

48Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

0

0

Vd

d λ

µ

λ −
=

Fig.7.14: Relationship between & µ for basic modelτ

(2)

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

49Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

−=

0

0

)(
1

)(

Vd

d τµ
λ

τ

τµ

For a derivation of this relationship, equation 1 can be written as:

The above equation can be solved for and result in :)(τµ

 −
−=

0

0
0 exp1)(

V
V

τλ
τµ

(3)

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

50Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Fig.7.15: Failure intensity versus execution time for basic model

The failure intensity as a function of execution time is shown in

figure given below

 −
=

0

0
0 exp)(

V

τλ
λτλ

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

51Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

� Derived quantities

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

Fig.7.16: Additional failures required to be experienced to reach the

objective

52Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

This can be derived in mathematical form as:

=∆

F

PLn
V

λ

λ

λ
τ

0

0

Fig.7.17: Additional time required to reach the

objective

53Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example- 7.1

Assume that a program will experience 200 failures in infinite time. It has

now experienced 100. The initial failure intensity was 20 failures/CPU hr.

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

(i) Determine the current failure intensity.

(ii) Find the decrement of failure intensity per failure.

(iii)Calculate the failures experienced and failure intensity after 20 and 100

CPU hrs. of execution.

(iv)Compute addition failures and additional execution time required to

reach the failure intensity objective of 5 failures/CPU hr.

Use the basic execution time model for the above mentioned calculations.

54Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution

Here Vo=200 failures

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

(i) Current failure intensity:

−=

0

0 1)(
V

µ
λµλ

failures100=µ

hr.PUfailures/C200 =λ

rhPUfailures/C10)5.01(20
200

100
120 =−=

−=

55Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

(ii) Decrement of failure intensity per failure can be calculated as:

hr.CPU/1.0
200

20

0

0 −=−=
−

=
Vd

d λ

µ

λ

 −
−=

0

0
0 exp1)(

V
V

τλ
τµ

(iii) (a) Failures experienced & failure intensity after 20 CPU hr:

))21exp(1(200
200

2020
exp1200 −−=

 ×−
−=

failures173)1353.01(200 ≈−=

56Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

 −
=

0

0
0 exp)(

V

τλ
λτλ

 −
−=

0

0
0 exp1)(

V
V

τλ
τµ

(b) Failures experienced & failure intensity after 100 CPU hr:

lmost)failures(a200
200

10020
exp1200 =

 ×−
−=

 −
=

0

0
0 exp)(

V

τλ
λτλ

hrCPUfailures /71.2)2exp(20
200

2020
exp20 =−=

 ×−
=

57Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

hrCPUfailures /000908.0
200

10020
exp20 =

 ×−
=

() failures50)510(
20

200

0

0 =−

=−

=∆ FP

V
λλ

λ
µ

(iv) Additional failures required to reach the failure intensity

objective of 5 failures/CPU hr.

()µ∆

58Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

=∆

F

PLn
V

λ

λ

λ
τ

0

0

Additional execution time required to reach failure intensity objective

of 5 failures/CPU hr.

hr.CPU93.6
5

10

20

200
=

= Ln

59Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

� Logarithmic Poisson Execution Time Model

Failure Intensity

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

Fig.7.18: Relationship between

)exp()(0 θµλµλ −=

60Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

Fig.7.19: Relationship between

)exp(0 µθθλ
µ

λ
−−=

d

d
θλ

µ

λ
−=

d

d

61Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

)1(
1

)(0 += θτλ
θ

τµ Ln

)1/()(00 += θτλλτλ

(4)

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

=∆

F

PLn
λ

λ

θ
µ

1

−=∆

PF λλθ
τ

111

objectiveintensity Failure

intensity failurePresent

=

=

F

P

λ

λ

62Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example- 7.2

Assume that the initial failure intensity is 20 failures/CPU hr. The failure

intensity decay parameter is 0.02/failures. We have experienced 100

failures up to this time.

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

(i) Determine the current failure intensity.

(ii) Calculate the decrement of failure intensity per failure.

(iii)Find the failures experienced and failure intensity after 20 and 100 CPU

hrs. of execution.

(iv)Compute the additional failures and additional execution time required to

reach the failure intensity objective of 2 failures/CPU hr.

Use Logarithmic Poisson execution time model for the above mentioned

calculations.

63Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

(i) Current failure intensity:

)exp()(0 θµλµλ −=

failures100=µ

failures/02.0=θ

hr.PUfailures/C200 =λ

= 20 exp (-0.02 x 100)

= 2.7 failures/CPU hr.

64Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

(ii) Decrement of failure intensity per failure can be calculated as:

θλ
d

d
−=

µ

λ

()1
1

)(0 += θτλ
θ

τµ Ln

(iii) (a) Failures experienced & failure intensity after 20 CPU hr:

failuresLn 109)12002.020(
02.0

1
=+××=

= -.02 x 2.7 = -.054/CPU hr.

65Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

()1/)(00 += θτλλτλ

(b) Failures experienced & failure intensity after 100 CPU hr:

./22.2)12002.20/()20(hrCPUfailures=+××=

()1
1

)(0 += θτλ
θ

τµ Ln

failuresLn 186)110002.020(
02.0

1
=+××=

()1/)(00 += θτλλτλ

./4878.0)110002.20/()20(hrCPUfailures=+××=

66Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

failures15
2

72

020

11
=

==∆

.

.
LnLn

F

P

λ

λ

θ
µ

(iv) Additional failures required to reach the failure intensity

objective of 2 failures/CPU hr.
()µ∆

hr.CPU56
72

1

2

1

020

1111
.

..
=

−=

−=∆

PF λλθ
τ

67Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example- 7.3

The following parameters for basic and logarithmic Poisson models are

given:

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

(a) Determine the addition failures and additional execution time required to

reach the failure intensity objective of 5 failures/CPU hr. for both models.

(b) Repeat this for an objective function of 0.5 failure/CPU hr. Assume that

we start with the initial failure intensity only.

Logarithmic Poisson

execution time model

Basic execution time model

hr PUfailures/C 10=
o

λ hr PUfailures/C 30=
o

λ

failures 010=
o

V failure250 /.=θ

68Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

(a) (i) Basic execution time model

)(
0

0
FP

V
λλ

λ
µ −=∆

0λ

=∆

F

PLn
λ

λ

λ
τ

0

0V

Pλ

failures50)510(
10

100
=−=

(Present failure intensity) in this case is same as (initial

failure intensity).

Now,

69Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

(ii) Logarithmic execution time model

hr.CPU93.6
5

10

10

100
=

= Ln

=∆

F

PLn
λ

λ

θ
µ

1

Failures67.71
5

30

025.0

1
=

= Ln

−=∆

PF λλθ
τ

111

hr.CPU66.6
30

1

5

1

025.0

1
=

−= Ln

70Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

(b) Failure intensity objective = 0.5 failures/CPU hr.

()FP

V
λλ

λ
µ −=∆

0

0

failures95)5.010(
10

100
=−=

Logarithmic model has calculated more failures in almost some duration of
execution time initially.

()Fλ

(i) Basic execution time model

=∆

F

PLn
V

λ

λ

λ
τ

0

0

hrCPULn /30
05.0

10

10

100
=

=

71Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

=∆

F

PLn
λ

λ
µ

θ

1

failuresLn 164
5.0

30

025.0

1
=

=

(ii) Logarithmic execution time model

−=∆

PF λλ
τ

11

θ

1

hrCPU /66.78
30

1

5.0

1

025.0

1
=

−=

72Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

The calendar time component is based on a debugging process

model. This model takes into account:

1. resources used in operating the program for a given

execution time and processing an associated quantity of

failure.

2. resources quantities available, and

3. the degree to which a resource can be utilized (due to

bottlenecks) during the period in which it is limiting.

Table 7.7 will help in visualizing these different aspects of the

resources, and the parameters that result.

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

� Calendar Time Component

73Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

PcPcµcθcComputer time

PfPfµf0Failure correction

personnel

1PIµIθIFailure identification

personnel

UtilisationQuantities

available

FailureCPU hrResource

Planned parametersUsage parameters
requirements per

Fig. : Calendar time component resources and parameters

Resource usage

74Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

τθµµ ∆+∆= ccCX

µµ ∆= ffX

τθµµ ∆+∆= IIIX

Hence, to be more precise, we have

(for computer time)

(for failure correction)

(for failure identification)

λµθτ rrT ddx +=/

75Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

ττ ddxpPddt Trr /)/1(/ =

rrrr pPddt /)(/ λµθτ +=

Calendar time to execution time relationship

76Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

Fig.7.20: Instantaneous calendar time to execution time ratio

77Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

Fig.7.21: Calendar time to execution time ratio for different

limiting resources

78Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example- 7.4

A team run test cases for 10 CPU hrs and identifies 25 failures. The effort

required per hour of execution time is 5 person hr. Each failure requires 2

hr. on an average to verify and determine its nature. Calculate the failure

identification effort required.

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

79Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

As we know, resource usage is:

µµτθ rrrX +=

hr.person15θHere =r

Hence,

failures25=µ

hrs.CPU10=τ rehrs./failu2=rµ

Xr = 5 (10) + 2 (25)

= 50 + 50 = 100 person hr.

80Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example- 7.5

Initial failure intensity for a given software is 20 failures/CPU hr. The

failure intensity objective of 1 failure/CPU hr. is to be achieved.

Assume the following resource usage parameters.

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

)(0λ

)(Fλ

1 CPU hr.1.5 CPU hr.Computer time

5 Person hr.0Failure Correction effort

1 Person hr.2 Person hr.Failure identification effort

Per failurePer hourResource Usage

81Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(a)What resources must be expended to achieve the reliability

improvement? Use the logarithmic Poisson execution time model with a

failure intensity decay parameter of 0.025/failure.

(b) If the failure intensity objective is cut to half, what is the effect on

requirement of resources ?

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

82Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

(a)

=∆

F

PLn
λ

λ

θ
µ

1

failures119
1

20

0.025

1
=

= Ln

−=∆

PF λλθ
τ

111

() hrs.CPU3805.01
025.0

1

20

1

1

1

025.0

1
=−=

−=

83Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

Hence τµµ ∆+∆= 111 θX

µµ ∆= FFX

= 1 (119) + 2 (38) = 195 Person hrs.

= 5 (119) = 595 Person hrs.

τµµ ∆+∆= ccCX θ

= 1 (119) + (1.5) (38) = 176 CPU hr.

84Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

(b) hr.PUfailures/C5.0=Fλ

failures148
5.0

20

025.0

1
=

=∆ Lnµ

.hrCPU78
20

1

5.0

1

025.0

1
=

−=∆τ

So, XI = 1 (148) + 2 (78) = 304 Person hrs.

XF = 5 (148) = 740 Person hrs.

XC = 1 (148) + (1.5)(78) = 265 CPU hrs.

85Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Hence, if we cut failure intensity objective to half, resources requirements

are not doubled but they are some what less. Note that is

approximately doubled but increases logarithmically. Thus, the resources

increase will be between a logarithmic increase and a linear increase for

changes in failure intensity objective.

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

τ∆

86Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example- 7.6

A program is expected to have 500 faults. It is also assumed that one fault

may lead to one failure only. The initial failure intensity was 2 failures/CPU

hr. The program was to be released with a failure intensity objective of 5

failures/100 CPU hr. Calculated the number of failure experienced before

release.

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

87Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

The number of failure experienced during testing can be calculated using
the equation mentioned below:

()FP

V
λλ

λ
µ −=∆

0

0

failureonetoleadsfaultonebecause500VHere 0 =

hr.PUfailures/C20 =λ

.hrCPU00failures/15F =λ

hr.PUfailures/C05.0=

88Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

So ()05.02
2

500
−=∆µ

= 487 failures

Hence 13 faults are expected to remain at the release instant of

the software.

89Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

� The Jelinski-Moranda Model

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

)1()(+−= iNt φλ

where

φ = Constant of proportionality

N = Total number of errors present

I = number of errors found by time interval ti

90Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

Fig.7.22: Relation between t & λ

91Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example- 7.7

There are 100 errors estimated to be present in a program. We have

experienced 60 errors. Use Jelinski-Moranda model to calculate

failure intensity with a given value of φ=0.03. What will be failure

intensity after the experience of 80 errors?

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

92Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution

N = 100 errors

i = 60 failures

φ = 0.03

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

We know

= 0.03(100-60+1)

= 1.23 failures/CPU hr.

)(.)(160100030 +−=tλ

After 80 failures)180100(03.0)(+−=tλ
= 0.63 failures/CPU hr.

Hence, there is continuous decrease in the failure intensity as the

number of failure experienced increases.

93Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

� The Bug Seeding Model

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

t

t

t

t

nn

n

NN

N

+
=

+

The bug seeding model is an outgrowth of a technique used to

estimate the number of animals in a wild life population or fish in a
pond.

t

t

N
n

n
N =
∧

s

s

N
n

n
N =

94Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

� Capability Maturity Model

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

Fig.7.23: Maturity levels of CMM

It is a strategy for improving the software process, irrespective of the

actual life cycle model used.

95Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Maturity Levels:

� Initial (Maturity Level 1)

� Repeatable (Maturity Level 2)

� Defined (Maturity Level 3)

� Managed (Maturity Level 4)

� Optimizing (Maturity Level 5)

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

96Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

Fig.7.24: The five levels of CMM

Process ControlOptimizing

Process MeasurementManaged

Process DefinitionDefined

Basic Project ManagementRepeatable

Adhoc ProcessInitial

CharacterizationMaturity Level

97Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

� Key Process Areas

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

The key process areas at level 2 focus on the software project’s

concerns related to establishing basic project management controls,
as summarized below:

98Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

The key process areas at level 3 address both project and

organizational issues, as summarized below:

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

99Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

100Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

The key process areas at level 4 focus on establishing a quantitative

understanding of both the software process and the software work
products being built, as summarized below:

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

101Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

The key process areas at level 5 cover the issues that both the

organization and the projects must address to implement continuous
and measurable software process improvement, as summarized

below:

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

102Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

� Common Features

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

103Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

� ISO 9000

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

The SEI capability maturity model initiative is an attempt to improve

software quality by improving the process by which software is

developed.

ISO-9000 series of standards is a set of document dealing with

quality systems that can be used for quality assurance purposes.

ISO-9000 series is not just software standard. It is a series of five

related standards that are applicable to a wide variety of industrial

activities, including design/ development, production, installation,
and servicing. Within the ISO 9000 Series, standard ISO 9001 for

quality system is the standard that is most applicable to software

development.

104Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

1. Management responsibility

2. Quality system

3. Contract review

4. Design control

5. Document control

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

� Mapping ISO 9001 to the CMM

6. Purchasing

7. Purchaser-supplied product

105Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

8. Product identification and traceability

9. Process control

10. Inspection and testing

11. Inspection, measuring and test equipment

12. Inspection and test status

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

13. Control of nonconforming product

14. Corrective action

106Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

15. Handling, storage, packaging and delivery

16. Quality records

17. Internal quality audits

18. Training

19. Servicing

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

20. Statistical techniques

107Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

� Contrasting ISO 9001 and the CMM

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

The biggest difference, however, between these two documents is

the emphasis of the CMM on continuous process improvement.

The biggest similarity is that for both the CMM and ISO 9001, the

bottom line is “Say what you do; do what you say”.

There is a strong correlation between ISO 9001 and the CMM,

although some issues in ISO 9001 are not covered in the CMM, and

some issues in the CMM are not addressed in ISO 9001.

108Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

7.1 Which one is not a phase of “bath tub curve” of hardware reliability

(a) Burn-in (b) Useful life

(c) Wear-out (d) Test-out

7.2 Software reliability is

(a) the probability of failure free operation of a program for a specified time in
a specified environment

(b) the probability of failure of a program for a specified time in a specified
environment

(c) the probability of success of a program for a specified time in any
environment

(d) None of the above

7.3 Fault is

(a) Defect in the program (b) Mistake in the program

(c) Error in the program (d) All of the above

7.4 One fault may lead to

(a) one failure (b) two failures

(c) many failures (d) all of the above

Multiple Choice Questions
Note: Choose most appropriate answer of the following questions:

109Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

7.7 Maximum possible value of reliability is

(a) 100 (b) 10

(c) 1 (d) 0

Multiple Choice Questions

7.5 Which ‘time’ unit is not used in reliability studies

(a) Execution time (b) Machine time

(c) Clock time (d) Calendar time

7.6 Failure occurrences can be represented as

(a) time to failure (b) time interval between failures

(c) failures experienced in a time interval (d) All of the above

7.9 As the reliability increases, failure intensity

(a) decreases (b) increases

(c) no effect (d) None of the above

7.8 Minimum possible value of reliability is

(a) 100 (b) 10

(c) 1 (d) 0

110Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

7.10 If failure intensity is 0.005 failures/hour during 10 hours of operation of a
software, its reliability can be expressed as

(a) 0.10 (b) 0.92

(c) 0.95 (d) 0.98

Multiple Choice Questions

7.11 Software Quality is

(a) Conformance to requirements (b) Fitness for the purpose

(c) Level of satisfaction (d) All of the above

7.12 Defect rate is

(a) number of defects per million lines of source code
(b) number of defects per function point

(c) number of defects per unit of size of software

(d) All of the above

7.13 How many product quality factors have been proposed in McCall quality model?

(a) 2 (b) 3

(c) 11 (d) 6

111Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

7.14 Which one is not a product quality factor of McCall quality model?

(a) Product revision (b) Product operation

(c) Product specification (d) Product transition

Multiple Choice Questions

7.15 The second level of quality attributes in McCall quality model are termed as

(a) quality criteria (b) quality factors

(c) quality guidelines (d) quality specifications

7.16 Which one is not a level in Boehm software quality model ?

(a) Primary uses (b) Intermediate constructs

(c) Primitive constructs (d) Final constructs

7.17 Which one is not a software quality model?

(a) McCall model (b) Boehm model

(c) ISO 9000 (d) ISO 9126

7.18 Basic execution time model was developed by

(a) Bev.Littlewood (b) J.D.Musa

(c) R.Pressman (d) Victor Baisili

112Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Multiple Choice Questions

7.19 NHPP stands for

(a) Non Homogeneous Poisson Process (b) Non Hetrogeneous Poisson Process

(c) Non Homogeneous Poisson Product (d) Non Hetrogeneous Poisson Product

7.20 In Basic execution time model, failure intensity is given by

7.21 In Basic execution time model, additional number of failures required to
achieve a failure intensity objective is expressed as

−=

0

2

0 1)()(
V

a
µ

λµλ

−=

0

0 1)()(
V

b
µ

λµλ

−=

µ
λµλ 0

0 1)()(
V

c

−=

2

0
0 1)()(

µ
λµλ

V
d

)(µ∆

)()(
0

0
FP

V
a λλ

λ
µ −=∆)()(

0

0
PF

V
b λλ

λ
µ −=∆

)()(
0

0
PF

V
c λλ

λ
µ −=∆)()(

0

0
FP

V
d λλ

λ
µ −=∆

113Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Multiple Choice Questions

7.22 In Basic execution time model, additional time required to achieve a failure
intensity objective is given as

7.23 Failure intensity function of Logarithmic Poisson execution model is given as

)(τ∆

)()()(0 θµλµλ −= LNa

=∆

P

FLn
V

c
λ

λ

λ
τ

0

0)(

=∆

F

PLn
V

d
λ

λ

λ
τ

0

0)(

=∆

P

FLn
V

a
λ

λλ
τ

0

0)(

=∆

F

PLn
V

b
λ

λλ
τ

0

0)(

)exp()()(0 θµλµλ =b

)exp()()(0 θµλµλ −=c)log()()(0 θµλµλ −=d

7.24 In Logarithmic Poisson execution model, ‘θ’ is known as

(a) Failure intensity function parameter (b) Failure intensity decay parameter

(c) Failure intensity measurement (d) Failure intensity increment parameter

114Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Multiple Choice Questions

7.25 In jelinski-Moranda model, failure intensity is defined aseneous Poisson
Product

7.26 CMM level 1 has

(a) 6 KPAs (b) 2 KPAs

(c) 0 KPAs (d) None of the above

7.27 MTBF stands for

(a) Mean time between failure (b) Maximum time between failures

(c) Minimum time between failures (d) Many time between failures

7.28 CMM model is a technique to

(a) Improve the software process (b) Automatically develop the software

(c) Test the software (d) All of the above

7.29 Total number of maturing levels in CMM are

(a) 1 (b) 3

(c) 5 (d) 7

)1()()(+−= iNta φλ

)1()()(−+= iNtc φλ

)1()()(++= iNtb φλ

)1()()(−−= iNtd φλ

115Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

7.30 Reliability of a software is dependent on number of errors

(a) removed (b) remaining

(c) both (a) & (b) (d) None of the above

7.31 Reliability of software is usually estimated at

(a) Analysis phase (b) Design phase

(c) Coding phase (d) Testing phase

Multiple Choice Questions

7.32 CMM stands for

(a) Capacity maturity model (b) Capability maturity model

(c) Cost management model (d) Comprehensive maintenance model

7.33 Which level of CMM is for basic project management?

(a) Initial (b) Repeatable

(c) Defined (d) Managed

7.34 Which level of CMM is for process management?

(a) Initial (b) Repeatable

(c) Defined (d) Optimizing

116Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Multiple Choice Questions

7.36 CMM was developed at

(a) Harvard University (b) Cambridge University

(c) Carnegie Mellon University (d) Maryland University

7.39 The number of clauses used in ISO 9001 are

(a) 15 (b) 25

(c) 20 (d) 10

7.35 Which level of CMM is for process management?

(a) Initial (b) Defined

(c) Managed (d) Optimizing

7.38 The model to measure the software process improvement is called

(a) ISO 9000 (b) ISO 9126

(c) CMM (d) Spiral model

7.37 McCall has developed a

(a) Quality model (b) Process improvement model

(c) Requirement model (d) Design model

117Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Multiple Choice Questions

7.41 In ISO 9126, each characteristics is related to

(a) one attributes (b) two attributes

(c) three attributes (d) four attributes

7.44 Each maturity model is CMM has

(a) One KPA (b) Equal KPAs

(c) Several KPAs (d) no KPA

7.40 ISO 9126 contains definitions of

(a) quality characteristics (b) quality factors

(c) quality attributes (d) All of the above

7.43 Which is not a software reliability model ?

(a) The Jelinski-Moranda Model (b) Basic execution time model

(c) Spiral model (d) None of the above

7.42 In McCall quality model; product revision quality factor consist of

(a) Maintainability (b) Flexibility

(c) Testability (d) None of the above

118Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Multiple Choice Questions

7.46 In reliability models, our emphasis is on

(a) errors (b) faults

(c) failures (d) bugs

7.49 MTTF stands for

(a) Mean time to failure (b) Maximum time to failure

(c) Minimum time to failure (d) None of the above

7.45 KPA in CMM stands for

(a) Key Process Area (b) Key Product Area

(c) Key Principal Area (d) Key Performance Area

7.48 Software reliability is defined with respect to

(a) time (b) speed

(c) quality (d) None of the above

7.47 Software does not break or wear out like hardware. What is your opinion?

(a) True (b) False

(c) Can not say (d) not fixed

119Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Multiple Choice Questions

7.50 ISO 9000 is a series of standards for quality management systems and has

(a) 2 related standards (b) 5 related standards

(c) 10 related standards (d) 25 related standards

120Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

7.1 What is software reliability? Does it exist?

7.2 Explain the significance of bath tube curve of reliability with the help of
a diagram.

7.3 Compare hardware reliability with software reliability.

7.6 Describe the following terms:

(i) Operational profile (ii) Input space

(iii) MTBF (iv) MTTF

(v) Failure intensity.

7.4 What is software failure? How is it related with a fault?

7.5 Discuss the various ways of characterising failure occurrences with
respect to time.

121Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

7.7 What are uses of reliability studies? How can one use software reliability
measures to monitor the operational performance of software?

7.8 What is software quality? Discuss software quality attributes.

7.9 What do you mean by software quality standards? Illustrate their essence
as well as benefits.

7.10 Describe the McCall software quality model. How many product quality
factors are defined and why?

7.11 Discuss the relationship between quality factors and quality criteria in
McCall’s software quality model.

7.12 Explain the Boehm software quality model with the help of a block
diagram.

7.13 What is ISO9126 ? What are the quality characteristics and attributes?

122Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

7.14 Compare the ISO9126 with McCall software quality model and
highlight few advantages of ISO9126.

7.15 Discuss the basic model of software reliability. How can be
calculated.

7.16 Assume that the initial failure intensity is 6 failures/CPU hr. The failure
intensity decay parameter is 0.02/failure. We assume that 45 failures
have been experienced. Calculate the current failure intensity.

7.17 Explain the basic & logarithmic Poisson model and their significance in
reliability studies.

τµ ∆∆ and

123Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

7.18 Assume that a program will experience 150 failures in infinite time. It
has now experienced 80. The initial failure intensity was 10 failures/CPU
hr.

(i) Determine the current failure intensity

(ii) Calculate the failures experienced and failure intensity after 25 and
40 CPU hrs. of execution.

(iii) Compute additional failures and additional execution time required
to reach the failure intensity objective of 2 failures/CPU hr.

Use the basic execution time model for the above mentioned
calculations.

7.19 Write a short note on Logarithmic Poisson Execution time model. How
can we calculate

7.20 Assume that the initial failure intensity is 10 failures/CPU hr. The
failure intensity decay parameter is 0.03/failure. We have experienced 75
failures upto this time. Find the failures experienced and failure intensity
after 25 and 50 CPU hrs. of execution.

?& τµ ∆∆

124Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

7.21 The following parameters for basic and logarithmic Poisson models are
given:

7.22 Quality and reliability are related concepts but are fundamentally
different in a number of ways. Discuss them.

7.23 Discuss the calendar time component model. Establish the relationship
between calendar time to execution time.

Determine the additional failures and additional execution time required
to reach the failure intensity objective of 0.1 failure/CPU hr. for both
models.

125Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

7.24 A program is expected to have 250 faults. It is also assumed that one
fault may lead to one failure. The initial failure intensity is 5 failure/CPU
hr. The program is released with a failure intensity objective of 4
failures/10 CPU hr. Calculate the number of failures experienced before
release.

7.25 Explain the Jelinski-Moranda model of reliability theory. What is the
relation between ‘t’ and

7.27 Explain how the CMM encourages continuous improvement of the
software process.

7.28 Discuss various key process areas of CMM at various maturity levels.

?''λ

7.26 Describe the Mill’s bug seeding model. Discuss few advantages of this
model over other reliability models.

7.30 Discuss the 20 clauses of ISO9001 and compare with the practices in the
CMM.

7.29 Construct a table that correlates key process areas (KPAs) in the CMM
with ISO9000.

126Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

7.31 List the difference of CMM and ISO9001. Why is it suggested that
CMM is the better choice than ISO9001?

7.32 Explain the significance of software reliability engineering. Discuss the
advantage of using any software standard for software development?

7.33 What are the various key process areas at defined level in CMM?
Describe activities associated with one key process area.

7.34 Discuss main requirements of ISO9001 and compare it with SEI
capability maturity model.

7.35 Discuss the relative merits of ISO9001 certification and the SEI CMM
based evaluation. Point out some of the shortcomings of the ISO9001
certification process as applied to the software industry.

