
1Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

2Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

Software Metrics: What and Why ?

1. How to measure the size of a software?

2. How much will it cost to develop a software?

3. How many bugs can we expect?

4. When can we stop testing?

5. When can we release the software?

3Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

6. What is the complexity of a module?

7. What is the module strength and coupling?

8. What is the reliability at the time of release?

9. Which test technique is more effective?

10. Are we testing hard or are we testing smart?

11. Do we have a strong program or a week test suite?

4Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

� Pressman explained as “A measure provides a quantitative

indication of the extent, amount, dimension, capacity, or size
of some attribute of the product or process”.

� Measurement is the act of determine a measure

� The metric is a quantitative measure of the degree to which

a system, component, or process possesses a given
attribute.

� Fenton defined measurement as “ it is the process by which
numbers or symbols are assigned to attributes of entities in

the real world in such a way as to describe them according

to clearly defined rules”.

5Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

� Definition

Software metrics can be defined as “The continuous application of

measurement based techniques to the software development
process and its products to supply meaningful and timely

management information, together with the use of those techniques

to improve that process and its products”.

6Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

� Areas of Applications

The most established area of software metrics is cost and size

estimation techniques.

The prediction of quality levels for software, often in terms of

reliability, is another area where software metrics have an important

role to play.

The use of software metrics to provide quantitative checks on

software design is also a well established area.

7Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

� Problems During Implementation

� Statement : Software development is to complex; it
cannot be managed like other parts of

the organization.

Management view : Forget it, we will find developers and

managers who will manage that

development.

� Statement : I am only six months late with project.

Management view : Fine, you are only out of a job.

8Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

� Statement : I am only six months late with project.

Management view : Fine, you are only out of a job.

� Statement : But you cannot put reliability constraints

in the contract.

Management view : Then we may not get the contract.

9Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

i. Product metrics: describe the characteristics of the
product such as size, complexity, design features,

performance, efficiency, reliability, portability, etc.

ii. Process metrics: describe the effectiveness and
quality of the processes that produce the software

product. Examples are:

� Categories of Metrics

• effort required in the process

• time to produce the product

• effectiveness of defect removal during development

• number of defects found during testing

• maturity of the process

10Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

ii. Project metrics: describe the project characteristics
and execution. Examples are :

• number of software developers

• staffing pattern over the life cycle of the software

• cost and schedule

• productivity

11Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

Token Count

The size of the vocabulary of a program, which consists of the

number of unique tokens used to build a program is defined as:

η = η1+ η2

η : vocabulary of a program

η1 : number of unique operators

η2 : number of unique operands

where

12Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

The length of the program in the terms of the total number of tokens

used is

N = N1+N2

N : program length

N1 : total occurrences of operators

N2 : total occurrences of operands

where

13Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

V = N * log2 η

Volume

The unit of measurement of volume is the common unit for

size “bits”. It is the actual size of a program if a uniform
binary encoding for the vocabulary is used.

Program Level

The value of L ranges between zero and one, with L=1
representing a program written at the highest possible level

(i.e., with minimum size).

L = V* / V

14Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

D = 1 / L

E = V / L = D * V

Program Difficulty

As the volume of an implementation of a program increases,

the program level decreases and the difficulty increases.

Thus, programming practices such as redundant usage of
operands, or the failure to use higher-level control constructs

will tend to increase the volume as well as the difficulty.

Effort

The unit of measurement of E is elementary mental

discriminations.

15Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

� Estimated Program Length

222121 loglog ηηηη +=Ν
∧

10log1014log14 22 +=Ν
∧

= 53.34 + 33.22 = 86.56

)!(log)!(2212 ηη +=Ν LogJ

The following alternate expressions have been published to

estimate program length.

16Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

122221 log ηηηη +=Ν LogB

2211 ηηηη +=Νc

2/)log(2 ηη=Ν s

The definitions of unique operators, unique operands, total

operators and total operands are not specifically delineated.

17Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

1. Comments are not considered.

2. The identifier and function declarations are not considered.

3. All the variables and constants are considered operands.

4. Global variables used in different modules of the same

program are counted as multiple occurrences of the same

variable.

� Counting rules for C language

18Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

6. Functions calls are considered as operators.

7. All looping statements e.g., do {…} while (), while () {…}, for ()

{…}, all control statements e.g., if () {…}, if () {…} else {…}, etc.

are considered as operators.

8. In control construct switch () {case:…}, switch as well as all the

case statements are considered as operators.

5. Local variables with the same name in different functions are

counted as unique operands.

19Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

11. GOTO is counted as an operator and the label is counted as

an operand.

12. The unary and binary occurrence of “+” and “-” are dealt

separately. Similarly “*” (multiplication operator) are dealt with
separately.

9. The reserve words like return, default, continue, break, sizeof,

etc., are considered as operators.

10. All the brackets, commas, and terminators are considered as

operators.

20Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

15. All the hash directive are ignored.

14. In the structure variables such as “struct-name, member-name”

or “struct-name -> member-name”, struct-name, member-name

are taken as operands and ‘.’, ‘->’ are taken as operators. Some
names of member elements in different structure variables are

counted as unique operands.

13. In the array variables such as “array-name [index]” “array-

name” and “index” are considered as operands and [] is

considered as operator.

21Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

� Potential Volume

)2(log)2(* *

22

*

2 ηη ++=V

� Estimated Program Level / Difficulty

Halstead offered an alternate formula that estimate the program

level.

where

∧

)/(2 212 Ν=
∧

ηηL

2

21

2

1

η

η Ν
==

∧

∧

L

D

22Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

∧∧

==Ε DVLV */

2221 2/)log(ηηNNn=

β/ET =

� Effort and Time

β is normally set to 18 since this seemed to give best results in

Halstead’s earliest experiments, which compared the predicted
times with observed programming times, including the time for

design, coding, and testing.

23Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

VLVL
2* =×=λ

� Language Level

Using this formula, Halstead and other researchers determined the

language level for various languages as shown in Table 1.

24Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

Table 1: Language levels

25Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example- 6.I

Consider the sorting program in Fig. 2 of chapter 4. List out the

operators and operands and also calculate the values of software

science measures like

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

.,,,, etcEVN λη

26Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution

The list of operators and operands is given in table 2.

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

27Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

Table 2: Operators and operands of sorting program of fig. 2 of chapter 4

28Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

Here N1=53 and N2=38. The program length N=N1+N2=91

Vocabulary of the program

Volume

= 91 x log224 = 417 bits

24101421 =+=+= ηηη

η2log×= NV

The estimated program length of the program
∧

N

= 14 log214 + 10 log210

= 14 * 3.81 + 10 * 3.32

= 53.34 + 33.2 = 86.45

29Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

Conceptually unique input and output parameters are

represented by

{x: array holding the integer to be sorted. This is used

both as input and output}.

{N: the size of the array to be sorted}.

The potential volume V* = 5 log25 = 11.6

L = V* / V

*

2η

3*

2 =η

Since

30Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

Estimated program level

027.0
417

6.11
==

D = I / L

03.37
027.0

1
==

038.0
38

10

14

22

2

2

1

=×=×=
∧

N
L

η

η

31Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

We may use another formula

67.15038.0417 =×=×=
∧∧

LVV

VDLVE ×==
∧∧∧

/

=417 / 0.038 = 10973.68

Therefore, 10974 elementary mental discrimination are
required to construct the program.

minutes10seconds610
18

10974
/ ==== βET

This is probably a reasonable time to produce the program,

which is very simple

32Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

Table 3

33Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

Table 3

34Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example- 6.2

Consider the program shown in Table 3. Calculate the various

software science metrics.

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

35Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution

List of operators and operands are given in Table 4.

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

Table 4

36Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

Table 5

37Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

Program vocabulary

Program length

= 84 + 55 = 139

42=η

N = N1 +N2

Estimated length 115.18518log1824log24 22 =+=
∧

N

% error = 24.91

Program volume V = 749.605 bits

Estimated program level

2

2

1

2

N

η

η
×=

02727.0
55

18

24

2
=×=

38Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

Effort
∧

= LV /

= 27488.33 elementary mental discriminations.

Time T =

02727.

605.748
=

18

33.27488
/ =βE

Minimal volume V*=20.4417

= 1527.1295 seconds

= 25.452 minutes

39Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

Data Structure Metrics

Data OutputInternal DataData InputProgram

Payroll Name/ Social Security

No./ Pay Rate/ Number

of hours worked

Spreadsheet

Software

Planner

Item Names/ Item

amounts/ Relationships

among items

Program size/ No. of

software developers on

team

Withholding rates

Overtime factors

Insurance premium

Rates

Cell computations

Sub-totals

Model parameters

Constants

Coefficients

Gross pay withholding

Net pay

Pay ledgers

Spreadsheet of items

and totals

Est. project effort

Est. project duration

Fig.1: Some examples of input, internal, and output data

40Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

One method for determining the amount of data is to count the

number of entries in the cross-reference list.

� The Amount of Data

A variable is a string of alphanumeric characters that is defined by a

developer and that is used to represent some value during either

compilation or execution.

41Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

Fig.2: Payday program

42Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

Fig.3: A cross reference of program payday

check

gross

hours

net

pay

rate

tax

2

4

6

4

5

6

4

14

12

11

14

12

11

13

14

13

12

15

13

12

14

15

14

13

15

15

15

14

15

43Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

2η

10stdin

9feof

Fig.4: Some items not counted as VARS

= VARS + unique constants + labels.

Halstead introduced a metric that he referred to as to be a count

of the operands in a program – including all variables, constants, and

labels. Thus,

2η

labelsconstantsunique2 ++= VARSη

44Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

Fig.6: Program payday with operands in brackets

45Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

The Usage of Data within a Module

� Live Variables

Definitions :

1. A variable is live from the beginning of a procedure to the end

of the procedure.

2. A variable is live at a particular statement only if it is referenced

a certain number of statements before or after that statement.

3. A variable is live from its first to its last references within a

procedure.

46Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

cont…

47Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

Fig.6: Bubble sort program

48Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

It is thus possible to define the average number of live variables,

which is the sum of the count of live variables divided by

the count of executable statements in a procedure. This is a

complexity measure for data usage in a procedure or program.

The live variables in the program in fig. 6 appear in fig. 7 the

average live variables for this program is

647.3
34

124
=

)(LV

49Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

CountLive VariablesLine

cont…

4

5

6

7

8

9

10

11

12

13

14

15

0

0

3

3

3

0

0

0

0

0

1

2

16 4

t, x, k

t, x, k

t, x, k

size

size, j

Size, j, a, b

50Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

CountLive VariablesLine

cont…

17

18

19

20

21

22

23

24

25

26

27

28

5

6

6

6

6

6

7

7

6

6

6

6

29 5

size, j, a, b, last

size, j, a, b, last, continue

size, j, a, b, last, continue

size, j, a, b, last, continue

size, j, a, b, last, continue

size, j, a, b, last, continue

size, j, a, b, last, continue, i

size, j, a, b, last, continue, i

size, j, a, b, continue, i

size, j, a, b, continue, i

size, j, a, b, continue, i

size, j, a, b, continue, i

size, j, a, b, i

51Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

CountLive VariablesLine

30

31

32

33

34

35

36

37

5

5

5

4

4

4

3

0

size, j, a, b, i

size, j, a, b, i

size, j, a, b, i

size, j, a, b

size, j, a, b

size, j, a, b

j, a, b

--

Fig.7: Live variables for the program in fig.6

52Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

� Variable spans

scanf (“%d %d, &a, &b)

x =a;

y = a – b;

z = a;

printf (“%d %d, a, b);

…

21

…

32

…

45

…

53

…

60

…

Fig.: Statements in ac program referring to variables a and b.

The size of a span indicates the number of statements that pass

between successive uses of a variables

53Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

� Making program-wide metrics from intra-module metrics

m

LV
programLV

i

m

i 1=
Σ

=

n

SP
programSP

i

n

i 1=
Σ

=

For example if we want to characterize the average number of live variables
for a program having modules, we can use this equation.

where is the average live variable metric computed from the ith module
i

LV)(

The average span size for a program of n spans could be computed by

using the equation.

)(SP

54Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

� Program Weakness

γ*LVWM =

A program consists of modules. Using the average number of live

variables and average life variables , the module weakness

has been defined as
)(LV)(γ

55Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

m

WM

WP
i

m

i








Σ

=
=1

A program is normally a combination of various modules, hence

program weakness can be a useful measure and is defined as:

where, WMi : weakness of ith module

WP : weakness of the program

m : number of modules in the program

56Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example- 6.3

Consider a program for sorting and searching. The program sorts an

array using selection sort and than search for an element in the

sorted array. The program is given in fig. 8. Generate cross

reference list for the program and also calculate and WM for the

program.

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

LV ,,γ

57Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

The given program is of 66 lines and has 11 variables. The variables

are a, I, j, item, min, temp, low, high, mid, loc and option.

58Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

59Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

60Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

61Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

Fig.8: Sorting & searching program

62Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

Cross-Reference list of the program is given below:

a

i

j

item

min

temp

low

high

mid

loc

option

11

12

12

12

12

12

13

13

13

13

14

18

16

25

44

24

29

46

45

46

56

40

19

16

25

47

27

31

47

46

47

61

41

27

16

25

49

29

50

47

49

62

27

18

27

59

30

52

51

50

29

19

30

62

54

52

51

30

22

31

54

52

30

22

59

31

22

61

37

24

47

36

49

36

59

36 37 37

63Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

CountLive VariablesLine

cont…

13

14

15

16

17

18

19

20

22

23

24

25

1

1

1

2

2

3

3

3

3

3

4

5

26 5

low

low

low

low, i

low, i

low, i, a

low, i, a

low, i, a

low, i, a

low, i, a

low, i, a, min

low, i, a, min, j

Live Variables per line are calculated as:

low, i, a, min, j

64Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

CountLive VariablesLine

cont…

27

28

29

30

31

32

33

34

35

36

37

38

5

5

6

6

5

3

3

3

3

3

3

2

39 2

low, i, a

low, i, a, min, j

low, i, a, min, j

low, i, a, min, j, temp

low, i, a, min, j, temp

low, i, a, j, temp

low, i, a

low, i, a

low, i, a

low, i, a

low, i, a

low, a

low, a

65Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

CountLive VariablesLine

cont…

40

41

42

43

44

45

46

47

48

49

50

51

3

3

2

2

3

4

5

5

5

5

5

5

52 5

low, a, option

low, a, option

low, a

low, a

low, a, item

low, a, item, high

low, a, item, high, mid

low, a, item, high, mid

low, a, item, high, mid

low, a, item, high, mid

low, a, item, high, mid

low, a, item, high, mid

low, a, item, high, mid

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

66Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

CountLive VariablesLine

cont…

53

54

55

56

57

58

59

60

61

62

5

5

3

4

4

4

4

3

3

2

low, a, item, high, mid

low, a, item, high, mid

a, item, mid

a, item, mid, loc

a, item, mid, loc

a, item, mid, loc

a, item, mid, loc

item, mid, loc

item, mid, loc

item, loc

67Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

CountLive VariablesLine

63

64

65

66

0

0

0

0

174Total

68Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Average number of live variables () =

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

statements executable ofCount

 variableslive ofcount of Sum

851815283

LV(WM) WeaknessModule

815
11

174

 variablesofnumber Total

 variableslive ofcount of Sum

283
53

174

...

.

.

=×=

×=

==

=

==

WM

LV

γ

γ

γ

LV

69Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

� The Sharing of Data Among Modules

A program normally contains several modules and share coupling

among modules. However, it may be desirable to know the amount

of data being shared among the modules.

Fig.10: Three modules from an imaginary program

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

70Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Fig.11: ”Pipes” of data shared among the modules

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

Fig.12: The data shared in program bubble

71Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

Component : Any element identified by decomposing a
(software) system into its constituent

parts.

Cohesion : The degree to which a component

performs a single function.

Coupling : The term used to describe the degree of

linkage between one component to
others in the same system.

Information Flow Metrics

72Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

1. ‘FAN IN’ is simply a count of the number of other Components

that can call, or pass control, to Component A.

2. ‘FANOUT’ is the number of Components that are called by

Component A.

3. This is derived from the first two by using the following formula.

We will call this measure the INFORMATION FLOW index of
Component A, abbreviated as IF(A).

� The Basic Information Flow Model

Information Flow metrics are applied to the Components of a

system design. Fig. 13 shows a fragment of such a design, and for
component ‘A’ we can define three measures, but remember that

these are the simplest models of IF.

IF(A) = [FAN IN(A) x FAN OUT (A)]2

73Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

Fig.13: Aspects of complexity

74Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

1. Note the level of each Component in the system design.

2. For each Component, count the number of calls so that
Component – this is the FAN IN of that Component. Some

organizations allow more than one Component at the highest

level in the design, so for Components at the highest level which

should have a FAN IN of zero, assign a FAN IN of one. Also

note that a simple model of FAN IN can penalize reused
Components.

3. For each Component, count the number of calls from the

Component. For Component that call no other, assign a FAN

OUT value of one.

The following is a step-by-step guide to deriving these most simple

of IF metrics.

cont…

75Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

4. Calculate the IF value for each Component using the above

formula.

5. Sum the IF value for all Components within each level which is

called as the LEVEL SUM.

6. Sum the IF values for the total system design which is called the

SYSTEM SUM.

7. For each level, rank the Component in that level according to

FAN IN, FAN OUT and IF values. Three histograms or line plots
should be prepared for each level.

8. Plot the LEVEL SUM values for each level using a histogram or

line plot.

76Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

� A More Sophisticated Information Flow Model

a = the number of components that call A.

b = the number of parameters passed to A from components

higher in the hierarchy.

c = the number of parameters passed to A from components

lower in the hierarchy.

d = the number of data elements read by component A.

Then:

FAN IN(A)= a + b + c + d

77Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

Also let:

e = the number of components called by A;

f = the number of parameters passed from A to components higher

in the hierarchy;

g = the number of parameters passed from A to components lower

in the hierarchy;

h = the number of data elements written to by A.

Then:

FAN OUT(A)= e + f + g + h

78Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

An action performed by or on an object, available

to all instances of class, need not be unique.

Operation6

Defines the structural properties of a class and

unique within a class.

Attribute5

an operation upon an object, defined as part of the

declaration of a class.

Method4

A set of objects that share a common structure and

common behavior manifested by a set of methods;

the set serves as a template from which object can

be created.

Class 3

A request that an object makes of another object to

perform an operation.

Message2

Object is an entity able to save a state (information)

and offers a number of operations (behavior) to

either examine or affect this state.

Object1

Meaning/purposeTermS.No

Object Oriented MetricsObject Oriented MetricsObject Oriented MetricsObject Oriented Metrics

Terminologies

79Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Object A is coupled to object B, if and only if A

sends a message to B.

Coupling 10

The degree to which the methods within a class

are related to one another.

Cohesion 9

A relationship among classes, where in an object

in a class acquires characteristics from one or

more other classes.

Inheritance 8

The process of creating an instance of the object

and binding or adding the specific data.

Instantiation 7

Meaning/purposeTermS.No

Object Oriented MetricsObject Oriented MetricsObject Oriented MetricsObject Oriented Metrics

Terminologies

80Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Object Oriented MetricsObject Oriented MetricsObject Oriented MetricsObject Oriented Metrics

• Measuring on class level

– coupling

– inheritance

– methods

– attributes

– cohesion

• Measuring on system level

81Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Object Oriented MetricsObject Oriented MetricsObject Oriented MetricsObject Oriented Metrics

Size Metrics:

� Number of Methods per Class (NOM)

� Number of Attributes per Class (NOA)

• Weighted Number Methods in a Class (WMC)

– Methods implemented within a class or the sum of the

complexities of all methods

82Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Object Oriented MetricsObject Oriented MetricsObject Oriented MetricsObject Oriented Metrics

Coupling Metrics:

• Response for a Class (RFC)

– Number of methods (internal and external) in a class.

� Data Abstraction Coupling(DAC)

- Number of Abstract Data Types in a class.

� Coupling between Objects (CBO)

– Number of other classes to which it is coupled.

83Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

• Message Passing Coupling (MPC)

– Number of send statements defined in a class.

• Coupling Factor (CF)

– Ratio of actual number of coupling in the system to

the max. possible coupling.

Object Oriented MetricsObject Oriented MetricsObject Oriented MetricsObject Oriented Metrics

84Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Object Oriented MetricsObject Oriented MetricsObject Oriented MetricsObject Oriented Metrics

Cohesion Metrics:

� LCOM: Lack of cohesion in methods

– Consider a class C1 with n methods M1, M2…., Mn. Let (Ij)

= set of all instance variables used by method Mi. There

are n such sets {I1},…….{In}. Let

otherwise 0

|Q| |P| if |,Q|-|P| LCOM

=

>=

}0II |)II({(Q and }0II |)II{(P ji j,ji j, ≠∩==∩= ii

)}.(I},........I{(n1 sets are 0 then P=0If all n

85Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Object Oriented MetricsObject Oriented MetricsObject Oriented MetricsObject Oriented Metrics

• Tight Class Cohesion (TCC)

_ Percentage of pairs of public methods of the class

with common attribute usage.

• Loose Class Cohesion (LCC)

– Same as TCC except that this metric also
consider indirectly connected methods.

• Information based Cohesion (ICH)

– Number of invocations of other methods of the same
class, weighted by the number of parameters of the

invoked method.

86Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Object Oriented MetricsObject Oriented MetricsObject Oriented MetricsObject Oriented Metrics

Inheritance Metrics:

• DIT - Depth of inheritance tree

• NOC - Number of children

– only immediate subclasses are counted.

87Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Inheritance Metrics:

• AIF- Attribute Inheritance Factor

– Ratio of the sum of inherited attributes in all classes of the

system to the total number of attributes for all classes.

∑
∑

=

==
TC

i ia

TC

i id

)(CA

 (CA

1

1
)

AIF

)(CA)(CA)(CA idiiia +=

Object Oriented MetricsObject Oriented MetricsObject Oriented MetricsObject Oriented Metrics

TC= total number of classes

Ad (Ci) = number of attribute declared in a class

Ai (Ci) = number of attribute inherited in a class

88Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Object Oriented MetricsObject Oriented MetricsObject Oriented MetricsObject Oriented Metrics

Inheritance Metrics:

• MIF- Method Inheritance Factor

– Ratio of the sum of inherited methods in all classes of the

system to the total number of methods for all classes.

∑
∑

=

==
TC

i
ia

TC

i
ii

)(CM

) (CM

1

1MIF

)(CM)(CM)(CM idiiia +=

TC= total number of classes

Md(Ci)= the number of methods declared in a class

Mi(Ci)= the number of methods inherited in a class

89Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

UseUseUseUse----Case Oriented MetricsCase Oriented MetricsCase Oriented MetricsCase Oriented Metrics

• Counting actors

2Interactive or protocol

driven interface

Average

1Program interfaceSimple

3Graphical interfaceComplex

FactorDescriptionType

Actor weighting factors

o Simple actor: represents another system with a defined interface.

o Average actor: another system that interacts through a text based

interface through a protocol such as TCP/IP.

o Complex actor: person interacting through a GUI interface.

The actors weight can be calculated by adding these values together.

90Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

UseUseUseUse----Case Oriented MetricsCase Oriented MetricsCase Oriented MetricsCase Oriented Metrics

• Counting use cases

104 to 7 transactionsAverage

53 or fewer transactionsSimple

15More than 7 transactionsComplex

FactorDescriptionType

Transaction-based weighting factors

The number of each use case type is counted in the software and

then each number is multiplied by a weighting factor as shown in
table above.

91Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Web Engineering Project MetricsWeb Engineering Project MetricsWeb Engineering Project MetricsWeb Engineering Project Metrics

� Number of static web pages

� Number of dynamic web pages

� Number of internal page links

� Word count

� Web page similarity

� Web page search and retrieval

� Number of static content objects

� Number of dynamic content objects

92Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Metrics AnalysisMetrics AnalysisMetrics AnalysisMetrics Analysis

Statistical Techniques

• Summary statistics such as mean, median, max. and min.

• Graphical representations such as histograms, pie charts and

box plots.

• Principal component analysis

• Regression and correlation analysis

• Reliability models for predicting future reliability.

93Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Metrics AnalysisMetrics AnalysisMetrics AnalysisMetrics Analysis

Problems with metric data:

• Normal Distribution

• Outliers

• Measurement Scale

• Multicollinearity

94Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Metrics AnalysisMetrics AnalysisMetrics AnalysisMetrics Analysis

Common pool of data:

• The selection of projects should be representative and not all

come from a single application domain or development styles.

• No single very large project should be allowed to dominate the

pool.

• For some projects, certain metrics may not have been collected.

95Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Metrics AnalysisMetrics AnalysisMetrics AnalysisMetrics Analysis

Pattern of Successful Applications:

• Any metric is better then none.

• Automation is essential.

• Empiricism is better then theory.

• Use multifactor rather then single metrics.

• Don’t confuse productivity metrics with complexity metrics.

• Let them mature.

• Maintain them.

• Let them die.

96Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

6.1 Which one is not a category of software metrics ?

(a) Product metrics (b) Process metrics

(c) Project metrics (d) People metrics

6.2 Software science measures are developed by

(a) M.Halstead (b) B.Littlewood

(c) T.J.McCabe (d) G.Rothermal

6.3 Vocabulary of a program is defined as:

6.4 In halstead theory of software science, volume is measured in bits. The bits are

(a) Number of bits required to store the program

(b) Actual size of a program if a uniform binary encoding scheme for
vocabulary is used

(c) Number of bits required to execute the program

(d) None of the above

Multiple Choice Questions
Note: Choose most appropriate answer of the following questions:

21)(ηηη +=a 21)(ηηη −=b

21)(ηηη ×=c 21 /)(ηηη =d

97Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

6.6 Language level is defined as

Multiple Choice Questions

6.7 Program weakness is

6.5 In Halstead theory, effort is measured in

(a) Person-months (b) Hours

(c) Elementary mental discriminations (d) None of the above

VLa
3)(=λ LVb =λ)(

*)(LVc =λ VLd
2)(=λ

γ×= LVWMa)(γ/)(LVWMb =

γ+= LVWMa)((d) None of the above

6.8 ‘FAN IN’ of a component A is defined as

(a) Count of the number of components that can call, or pass control, to
component A

(b) Number of components related to component A

(c) Number of components dependent on component A

(d) None of the above

98Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

6.9 ‘FAN OUT’ of a component A is defined as

(a) number of components related to component A

(b) number of components dependent on component A

(c) number of components that are called by component A

(d) none of the above

Multiple Choice Questions

6.10 Which is not a size metric?

(a) LOC (b) Function count

(c) Program length (d) Cyclomatic complexity

6.12 A human mind is capable of making how many number of elementary mental
discriminations per second (i.e., stroud number)?

(a) 5 to 20 (b) 20 to 40

(c) 1 to 10 (d) 40 to 80

6.11 Which one is not a measure of software science theory?

(a) Vocabulary (b) Volume

(c) Level (d) Logic

99Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

6.13 Minimal implementation of any algorithm was given the following name by
Halstead:

(a) Volume (b) Potential volume

(c) Effective volume (d) None of the above

6.14 Program volume of a software product is

(a) V=N log2n (b) V=(N/2) log2n

(c) V=2N log2n (d) V=N log2n+1

6.15 Which one is the international standard for size measure?

(a) LOC (b) Function count

(c) Program length (d) None of the above

Multiple Choice Questions

6.16 Which one is not an object oriented metric?

(a) RFC (b) CBO

(c)DAC (d) OBC

100Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Multiple Choice Questions

6.17 Which metric also consider indirect connected methods?

(a) TCC (b) LCC

(c) Both of the above (d) None of the above

6.20 Which of the following is not a size metric?

(a) LOC (b) FP

(c) Cyclomatic Complexity (d) program length

6.18 depth of inheritance tree (DIT) can be measured by:

(a) Number of ancestors classes (b) Number of successor classes

(c) Number of failure classes (d) Number of root classes

6.19 A dynamic page is:

(a) where contents are not dependent on the actions of the user

(b) where contents are dependent on the actions of the user

(c) where contents cannot be displayed

(d) None of the above

101Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

6.1 Define software metrics. Why do we really need metrics in software?

6.2 Discus the areas of applications of software metrics? What are the
problems during implementation of metrics in any organizations?

6.3 What are the various categories of software metrics? Discuss with the
help of suitable example.

6.4 Explain the Halstead theory of software science. Is it significant in
today’s scenario of component based software development?

6.5 What is the importance of language level in Halstead theory of software
science?

6.6 Give Halstead’s software science measure for:

(i) Program Length (ii) Program volume

(iii) Program level (iv) Effort

(v) Language level

102Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

6.7 For a program with number of unique operators and number of

unique operands , Compute the following:

(i) Program volume (ii) Effort and time

(iii) Program length (iv) Program level

6.8 Develop a small software tool that will perform a Halstead analysis on a
programming language source code of your choice.

6.9 Write a program in C and also PASCAL for the calculation of the roots
of a quadratic equation, Find out all software science metrics for both the
programs. Compare the outcomes and comment on the efficiency and
size of both the source codes.

6.10 How should a procedure identifier be considered, both when declared
and when called/ What about the identifier of a procedure that is passed
as a parameter to another procedure?

201 =η

402 =η

103Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

6.11 Assume that the previous payroll program is expected to read a file
containing information about all the cheques that have been printed. The
file is supposed to be printed and also used by the program next time it is
run, to produce a report that compares payroll expenses of the current
month with those of the previous month. Compute functions points for
this program. Justify the difference between the function points of this
program and previous one by considering how the complexity of the
program is affected by adding the requirement of interfacing with
another application (in this case, itself).

6.12 Define data structure metrics. How can we calculate amount of data in a
program?

6.13 Describe the concept of module weakness. Is it applicable to programs
also.

6.14 Write a program for the calculation of roots of a quadratic equation.
Generate cross reference list for the program and also calculate for this
program.

104Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

6.15 Show that the value of SP at a particular statement is also the value of
LV at that point.

6.16 Discuss the significance of data structure metrics during testing.

6.17 What are information flow metrics? Explain the basic information flow
model.

6.18 Discuss the problems with metrics data. Explain two methods for the
analysis of such data.

6.19 Show why and how software metrics can improve the software process.
Enumerate the effect of metrics on software productivity.

6.20 Why does lines of code (LOC) not measure software nesting and control
structures?

6.21 Several researchers in software metrics concentrate on data structure to
measure complexity. Is data structure a complexity or quality issue, or
both?

105Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

6.22 List the benefits and disadvantages of using Library routines rather than
writing own code.

6.23 Compare software science measure and function points as measure of
complexity. Which do you think more useful as a predictor of how much
particular software’s development will cost?

6.24 Some experimental evidence suggests that the initial size estimate for a
project affects the nature and results of the project. Consider two
different managers charged with developing the same application. One
estimates that the size of the application will be 50,000 lines, while the
other estimates that it will be 100,000 lines. Discuss how these estimates
affect the project throughout its life cycle.

6.25 Which one is the most appropriate size estimation technique and why?

6.26 Discuss the object oriented metrics. What is the importance of metrics
in object oriented software development ?

106Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

6.27 Define the following: RFC, CBO, DAC, TCC, LCC & DIT.

6.28 What is the significance of use case metrics? Is it really important to
design such metrics?

