
1Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

2Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

� More creative than analysis

� Problem solving activity

‘HOW’

Software design document (SDD)

WHAT IS DESIGN

3Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Gather data on user requirements

Analyze requirements data

Conceive of a high level design

Refine & document the design

Initial requirements

Obtain answers to
requirement
questions

Validate the design
against the

requirements

Completed design

Fig. 1 : Design framework

4Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

design

Customer Developers

(Implementers)

Satisfy

Software DesignSoftware DesignSoftware DesignSoftware Design

5Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Fig. 2 : A two part design process

A two part design
process

Customer System

Builders

How

Technical

design

D

e

s

i
g

n

e

r
s

What

Conceptual

design

Conceptual Design and Technical Design

Software DesignSoftware DesignSoftware DesignSoftware Design

6Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Conceptual design answers :

� Where will the data come from ?

� What will happen to data in the system?

� How will the system look to users?

� What choices will be offered to users?

� What is the timings of events?

� How will the reports & screens look like?

7Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Technical design describes :

� Hardware configuration

� Software needs

� Communication interfaces

� I/O of the system

� Software architecture

� Network architecture

� Any other thing that translates the requirements in to a

solution to the customer’s problem.

8Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

The design needs to be

� Correct & complete

� Understandable

� At the right level

� Maintainable

9Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Informal

design

outline

Informal

design

More

formal

design

Finished

design

Fig. 3 : The transformation of an informal design to a detailed

design.

10Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

MODULARITY

There are many definitions of the term module. Range is from :

i. Fortran subroutine

ii. Ada package

iii. Procedures & functions of PASCAL & C

iv. C++ / Java classes

v. Java packages

vi. Work assignment for an individual programmer

11Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

All these definitions are correct. A modular

system consist of well defined manageable

units with well defined interfaces among

the units.

12Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Properties :

i. Well defined subsystem

ii. Well defined purpose

iii. Can be separately compiled and stored in a
library.

iv. Module can use other modules

v. Module should be easier to use than to build

vi. Simpler from outside than from the inside.

13Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Modularity is the single attribute of software that

allows a program to be intellectually manageable.

It enhances design clarity, which in turn eases

implementation, debugging, testing,

documenting, and maintenance of software

product.

14Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Fig. 4 : Modularity and software cost

15Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Module Coupling

(Uncoupled : no dependencies)

(a)

Coupling is the measure of the degree of

interdependence between modules.

16Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Loosely coupled:
some dependencies

(B)

Highly coupled:
many dependencies

(C)

Fig. 5 : Module coupling

17Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

This can be achieved as:

� Controlling the number of parameters passed
amongst modules.

� Avoid passing undesired data to calling
module.

� Maintain parent / child relationship between
calling & called modules.

� Pass data, not the control information.

18Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Consider the example of editing a student record in a

‘student information system’.

Edit student

record

Retrieve

student record

Student name,
student ID,

address,

course

Student

record

EOF

Edit student

record

Retrieve

student record

Student
record

EOF

Student

ID

Poor design: Tight Coupling Good design: Loose Coupling

Fig. 6 : Example of coupling

19Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Given two procedures A & B, we can identify number of

ways in which they can be coupled.

Worst Content coupling

Common coupling

External coupling

Control coupling

Stamp coupling

BestData coupling

Fig. 7 : The types of module coupling

Software DesignSoftware DesignSoftware DesignSoftware Design

20Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Data coupling

Stamp coupling

The dependency between module A and B is said to be data

coupled if their dependency is based on the fact they

communicate by only passing of data. Other than

communicating through data, the two modules are

independent.

Stamp coupling occurs between module A and B when

complete data structure is passed from one module to another.

21Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Control coupling

Module A and B are said to be control coupled if they

communicate by passing of control information. This is usually

accomplished by means of flags that are set by one module and

reacted upon by the dependent module.

Common coupling

With common coupling, module A and module B have shared

data. Global data areas are commonly found in programming

languages. Making a change to the common data means tracing

back to all the modules which access that data to evaluate the

effect of changes.

22Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Fig. 8 : Example of common coupling

Software DesignSoftware DesignSoftware DesignSoftware Design

23Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Content coupling

Content coupling occurs when module A changes data of

module B or when control is passed from one module to the

middle of another. In Fig. 9, module B branches into D, even

though D is supposed to be under the control of C.

24Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Fig. 9 : Example of content coupling

Software DesignSoftware DesignSoftware DesignSoftware Design

25Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Cohesion is a measure of the degree to which the

elements of a module are functionally related.

Software DesignSoftware DesignSoftware DesignSoftware Design

Module Cohesion

Fig. 10 : Cohesion=Strength of relations within modules

Module
strength

26Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Types of cohesion

� Functional cohesion

� Sequential cohesion

� Procedural cohesion

� Temporal cohesion

� Logical cohesion

� Coincident cohesion

27Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Fig. 11 : Types of module cohesion

Software DesignSoftware DesignSoftware DesignSoftware Design

Worst (low)Coincidental Cohesion

Logical Cohesion

Temporal Cohesion

Procedural Cohesion

Communicational Cohesion

Sequential Cohesion

Best (high)Functional Cohesion

28Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Functional Cohesion

� A and B are part of a single functional task. This is very good

reason for them to be contained in the same procedure.

Sequential Cohesion

� Module A outputs some data which forms the input to B. This is

the reason for them to be contained in the same procedure.

29Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Procedural Cohesion

�Procedural Cohesion occurs in modules whose instructions

although accomplish different tasks yet have been combined

because there is a specific order in which the tasks are to be
completed.

Temporal Cohesion

�Module exhibits temporal cohesion when it contains tasks that

are related by the fact that all tasks must be executed in the

same time-span.

30Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Logical Cohesion

� Logical cohesion occurs in modules that contain instructions

that appear to be related because they fall into the same logical

class of functions.

Coincidental Cohesion

� Coincidental cohesion exists in modules that contain

instructions that have little or no relationship to one another.

31Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Relationship between Cohesion & Coupling

Fig. 12 : View of cohesion and coupling

If the software is not properly modularized, a host of seemingly

trivial enhancement or changes will result into death of the project.

Therefore, a software engineer must design the modules with goal of

high cohesion and low coupling.

32Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

STRATEGY OF DESIGN

A good system design strategy is to organize the program modules

in such a way that are easy to develop and latter to, change.

Structured design techniques help developers to deal with the size

and complexity of programs. Analysts create instructions for the

developers about how code should be written and how pieces of

code should fit together to form a program. It is important for two

reasons:

� First, even pre-existing code, if any, needs to be understood,

organized and pieced together.

� Second, it is still common for the project team to have to write

some code and produce original programs that support the

application logic of the system.

33Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Bottom-Up Design

Fig. 13 : Bottom-up tree structure

These modules are collected together in the form of a “library”.

Software DesignSoftware DesignSoftware DesignSoftware Design

34Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Top-Down Design

A top down design approach starts by identifying the major modules

of the system, decomposing them into their lower level modules and

iterating until the desired level of detail is achieved. This is stepwise

refinement; starting from an abstract design, in each step the design

is refined to a more concrete level, until we reach a level where no

more refinement is needed and the design can be implemented

directly.

Software DesignSoftware DesignSoftware DesignSoftware Design

35Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Hybrid Design

For top-down approach to be effective, some bottom-up approach is

essential for the following reasons:

Software DesignSoftware DesignSoftware DesignSoftware Design

� To permit common sub modules.

� Near the bottom of the hierarchy, where the intuition is simpler,

and the need for bottom-up testing is greater, because there are
more number of modules at low levels than high levels.

� In the use of pre-written library modules, in particular, reuse of

modules.

36Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

FUNCTION ORIENTED DESIGN

Function Oriented design is an approach to software design where

the design is decomposed into a set of interacting units where each

unit has a clearly defined function. Thus, system is designed from

a functional viewpoint.

Software DesignSoftware DesignSoftware DesignSoftware Design

37Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

38Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

We continue the refinement of each module until we reach the statement

level of our programming language. At that point, we can describe the

structure of our program as a tree of refinement as in design top-down

structure as shown in fig. 14.

Software DesignSoftware DesignSoftware DesignSoftware Design

Fig. 14 : Top-down structure

39Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

If a program is created top-down, the modules become very specialized.

As one can easily see in top down design structure, each module is used

by at most one other module, its parent. For a module, however, we

must require that several other modules as in design reusable structure

as shown in fig. 15.

Software DesignSoftware DesignSoftware DesignSoftware Design

Fig. 15 : Design reusable structure

40Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Design Notations

Design notations are largely meant to be used during the process

of design and are used to represent design or design decisions.

For a function oriented design, the design can be represented
graphically or mathematically by the following:

Software DesignSoftware DesignSoftware DesignSoftware Design

� Data flow diagrams

� Data Dictionaries

� Structure Charts

� Pseudocode

41Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Structure Chart

It partition a system into block boxes. A black box means that

functionality is known to the user without the knowledge of internal

design.

Software DesignSoftware DesignSoftware DesignSoftware Design

Fig. 16 : Hierarchical format of a structure chart

42Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Fig. 17 : Structure chart notations

43Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Fig. 18 : Update file

A structure chart for “update file” is given in fig. 18.

44Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Fig. 19 : Transaction-centered structure

A transaction centered structure describes a system that processes a

number of different types of transactions. It is illustrated in Fig.19.

45Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

In the above figure the MAIN module controls the system operation

its functions is to:

Software DesignSoftware DesignSoftware DesignSoftware Design

� invoke the INPUT module to read a transaction;

� determine the kind of transaction and select one of a number

of transaction modules to process that transaction, and

� output the results of the processing by calling OUTPUT

module.

46Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Pseudocode

Pseudocode notation can be used in both the preliminary and detailed

design phases.

Software DesignSoftware DesignSoftware DesignSoftware Design

Using pseudocode, the designer describes system characteristics

using short, concise, English language phrases that are structured by

key words such as It-Then-Else, While-Do, and End.

47Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Functional Procedure Layers

Software DesignSoftware DesignSoftware DesignSoftware Design

� Function are built in layers, Additional notation is used to

specify details.

� Level 0

� Function or procedure name

� Relationship to other system components (e.g., part of
which system, called by which routines, etc.)

� Brief description of the function purpose.

� Author, date

48Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

� Level 1

� Function Parameters (problem variables, types, purpose,

etc.)

� Global variables (problem variable, type, purpose,

sharing information)

� Routines called by the function

� Side effects

� Input/Output Assertions

49Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

� Level 2

� Local data structures (variable etc.)

� Timing constraints

� Exception handling (conditions, responses, events)

� Any other limitations

� Level 3

� Body (structured chart, English pseudo code, decision

tables, flow charts, etc.)

50Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

IEEE Recommended practice for software design

descriptions (IEEE STD 1016-1998)

An SDD is a representation of a software system that is used as a medium

for communicating software design information.

Software DesignSoftware DesignSoftware DesignSoftware Design

� Scope

� References

i. IEEE std 830-1998, IEEE recommended practice for

software requirements specifications.

ii. IEEE std 610.12-1990, IEEE glossary of software

engineering terminology.

51Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

� Definitions

i. Design entity. An element (Component) of a design that is

structurally and functionally distinct from other elements and

that is separately named and referenced.

ii. Design View. A subset of design entity attribute information

that is specifically suited to the needs of a software project

activity.

iii. Entity attributes. A named property or characteristics of a

design entity. It provides a statement of fact about the entity.

iv. Software design description (SDD). A representation of a

software system created to facilitate analysis, planning,

implementation and decision making.

52Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

The SDD shows how the software system will be structured to

satisfy the requirements identified in the SRS. It is basically the

translation of requirements into a description of the software

structure, software components, interfaces, and data necessary for
the implementation phase. Hence, SDD becomes the blue print for

the implementation activity.

Software DesignSoftware DesignSoftware DesignSoftware Design

� Purpose of an SDD

� Design Description Information Content

� Introduction

� Design entities

� Design entity attributes

53Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

a) Identification

b) Type

c) Purpose

d) Function

e) Subordinates

f) Dependencies

Software DesignSoftware DesignSoftware DesignSoftware Design

The attributes and associated information items are defined in the

following subsections:

g) Interface

h) Resources

i) Processing

j) Data

54Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Each design description writer may have a different view of what

are considered the essential aspects of a software design. The

organization of SDD is given in table 1. This is one of the possible

ways to organize and format the SDD.

Software DesignSoftware DesignSoftware DesignSoftware Design

� Design Description Organization

A recommended organization of the SDD into separate design

views to facilitate information access and assimilation is given in

table 2.

55Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Cont…

56Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Table 1:

Organization of

SDD

57Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Table 2: Design views

Flow charts, PDL etc.Identification,

processing, data

Description of the internal

design details of an entity

Detail

description

Interface files,

parameter tables

Identification,

function, interfaces

List of everything a

designer, developer, tester

needs to know to use design

entities that make up the

system

Interface

description

Structure chart, data

flow diagrams,

transaction diagrams

Identification, type,

purpose, dependencies,

resources

Description of relationships

among entities of system

resources

Dependency

description

Hierarchical

decomposition diagram,

natural language

Identification, type

purpose, function,

subordinate

Partition of the system into

design entities

Decomposition

description

Example

representation

Entity attributeScopeDesign View

58Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Object Oriented Design

Object oriented design is the result of focusing attention not on the

function performed by the program, but instead on the data that are

to do manipulated by the program. Thus, it is orthogonal to function
oriented design.

Software DesignSoftware DesignSoftware DesignSoftware Design

Object Oriented Design begins with an examination of the real

world “things” that are part of the problem to be solved. These
things (which we will call objects) are characterized individually in

terms of their attributes and behavior.

59Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Object Oriented Design is not dependent on any specific

implementation language. Problems are modeled using objects.

Objects have:

Software DesignSoftware DesignSoftware DesignSoftware Design

� Basic Concepts

� Behavior (they do things)

� State (which changes when they do things)

60Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

i. Objects

Software DesignSoftware DesignSoftware DesignSoftware Design

The various terms related to object design are:

The word “Object” is used very frequently and conveys different

meaning in different circumstances. Here, meaning is an entity able to

save a state (information) and which offers a number of operations

(behavior) to either examine or affect this state. An object is

characterized by number of operations and a state which remembers

the effect of these operations.

61Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Objects communicate by message passing. Messages consist of the

identity of the target object, the name of the requested operation and

any other operation needed to perform the function. Message are often

implemented as procedure or function calls.

ii. Messages

iii. Abstraction

In object oriented design, complexity is managed using abstraction.

Abstraction is the elimination of the irrelevant and the amplification of

the essentials.

62Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

In any system, there shall be number of objects. Some of the objects

may have common characteristics and we can group the objects

according to these characteristics. This type of grouping is known as a

class. Hence, a class is a set of objects that share a common structure

and a common behavior.

iv. Class

We may define a class “car” and each object that represent a car

becomes an instance of this class. In this class “car”, Indica, Santro,

Maruti, Indigo are instances of this class as shown in fig. 20.

Classes are useful because they act as a blueprint for objects. If we

want a new square we may use the square class and simply fill in the

particular details (i.e. colour and position) fig. 21 shows how can we

represent the square class.

63Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Fig.20: Indica, Santro, Maruti, Indigo are all instances of the class “car”

64Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Fig. 21: The square class

65Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

An attributes is a data value held by the objects in a class. The square

class has two attributes: a colour and array of points. Each attributes

has a value for each object instance. The attributes are shown as

second part of the class as shown in fig. 21.

v. Attributes

An operation is a function or transformation that may be applied to or

by objects in a class. In the square class, we have two operations: set

colour() and draw(). All objects in a class share the same operations.

An object “knows” its class, and hence the right implementation of the

operation. Operation are shown in the third part of the class as

indicated in fig. 21.

vi. Operations

66Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Imagine that, as well as squares, we have triangle class. Fig. 22 shows

the class for a triangle.

vii. Inheritance

Fig. 22: The triangle class

67Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Now, comparing fig. 21 and 22, we can see that there is some

difference between triangle and squares classes.

For example, at a high level of abstraction, we might want to think of a

picture as made up of shapes and to draw the picture, we draw each

shape in turn. We want to eliminate the irrelevant details: we do not

care that one shape is a square and the other is a triangle as long as

both can draw themselves.

To do this, we consider the important parts out of these classes in to a

new class called Shape. Fig. 23 shows the results.

68Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Fig. 23: Abstracting common features in a new class

This sort of abstraction is called inheritance. The low level classes

(known as subclasses or derived classes) inherit state and behavior

from this high level class (known as a super class or base class).

69Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

When we abstract just the interface of an operation and leave the

implementation to subclasses it is called a polymorphic operation and

process is called polymorphism.

Encapsulation is also commonly referred to as “Information Hiding”. It

consists of the separation of the external aspects of an object from the

internal implementation details of the object.

viii. Polymorphism

ix. Encapsulation (Information Hiding)

x. Hierarchy

Hierarchy involves organizing something according to some particular

order or rank. It is another mechanism for reducing the complexity of

software by being able to treat and express sub-types in a generic way.

70Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Fig. 24: Hierarchy

71Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

There are various steps in the analysis and design of an object

oriented system and are given in fig. 25

Software DesignSoftware DesignSoftware DesignSoftware Design

� Steps to Analyze and Design Object Oriented System

72Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Fig. 25: Steps for analysis & design of object

oriented system

73Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

i. Create use case model

Software DesignSoftware DesignSoftware DesignSoftware Design

First step is to identify the actors interacting with the system. We

should then write the use case and draw the use case diagram.

Activity Diagram illustrate the dynamic nature of a system by modeling

the flow of control form activity to activity. An activity represents an

operation on some class in the system that results in a change in the

state of the system. Fig. 26 shows the activity diagram processing an

order to deliver some goods.

ii. Draw activity diagram (If required)

74Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Fig. 26: Activity diagram

75Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

iii. Draw the interaction diagram

An interaction diagram shows an interaction, consisting of a set of

objects and their relationship, including the messages that may be

dispatched among them. Interaction diagrams address the dynamic

view of a system.

a) Firstly, we should identify that the objects with respects to every

use case.

b) We draw the sequence diagrams for every use case.

d) We draw the collaboration diagrams for every use case.

Steps to draws interaction diagrams are as under:

76Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

The object types used in this analysis model are entity objects,

interface objects and control objects as given in fig. 27.

Fig. 27: Object types

77Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

The class diagram shows the relationship amongst classes. There are

four types of relationships in class diagrams.

iv. Draw the class diagram

a) Association are semantic connection between classes. When

an association connects two classes, each class can send

messages to the other in a sequence or a collaboration
diagram. Associations can be bi-directional or unidirectional.

78Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

b) Dependencies connect two classes. Dependencies are

always unidirectional and show that one class, depends on the

definitions in another class.

c) Aggregations are stronger form of association. An

aggregation is a relationship between a whole and its parts.

d) Generalizations are used to show an inheritance relationship

between two classes.

79Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

A state chart diagram is used to show the state space of a given class,

the event that cause a transition from one state to another, and the

action that result from a state change. A state transition diagram for a

“book” in the library system is given in fig. 28.

v. Design of state chart diagrams

Fig. 28: Transition chart for “book” in a library system.

80Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Component diagrams address the static implementation view of a

system they are related to class diagrams in that a component typically

maps to one or more classes, interfaces or collaboration.

vi. Draw component and development diagram

Deployment Diagram Captures relationship between physical

components and the hardware.

81Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

A software has to be developed for automating the manual library of a

University. The system should be stand alone in nature. It should be

designed to provide functionality’s as explained below:

Issue of Books:

� A student of any course should be able to get books issued.

� Books from General Section are issued to all but Book bank

books are issued only for their respective courses.

� A limitation is imposed on the number of books a student can

issue.

� A maximum of 4 books from Book bank and 3 books from

General section is issued for 15 days only.The software takes

the current system date as the date of issue and calculates date

of return.

82Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

� A bar code detector is used to save the student as well as book

information.

� The due date for return of the book is stamped on the book.

Return of Books:

� Any person can return the issued books.

� The student information is displayed using the bar code

detector.

� The system displays the student details on whose name the

books were issued as well as the date of issue and return of the

book.

� The system operator verifies the duration for the issue.

� The information is saved and the corresponding updating take

place in the database.

83Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Query Processing:

� The system should be able to provide information like:

� Availability of a particular book.

� Availability of book of any particular author.

� Number of copies available of the desired book.

The system should also be able to generate reports regarding the

details of the books available in the library at any given time. The

corresponding printouts for each entry (issue/return) made in the

system should be generated. Security provisions like the ‘login

authenticity should be provided. Each user should have a user id and

a password. Record of the users of the system should be kept in the

log file. Provision should be made for full backup of the system.

84Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

85Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

86Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

87Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

88Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

89Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

90Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

91Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

92Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

93Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

94Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

5.1 The most desirable form of coupling is

(a) Control Coupling (b) Data Coupling

(c) Common Coupling (d) Content Coupling

5.2 The worst type of coupling is

(a) Content coupling (b) Common coupling

(c) External coupling (d) Data coupling

Multiple Choice Questions
Note: Choose most appropriate answer of the following questions:

5.3 The most desirable form of cohesion is

(a) Logical cohesion (b) Procedural cohesion

(c) Functional cohesion (d) Temporal cohesion

5.4 The worst type of cohesion is

(a) Temporal cohesion (b) Coincidental cohesion

(c) Logical cohesion (d) Sequential cohesion

5.5 Which one is not a strategy for design?

(a) Bottom up design (b) Top down design

(c) Embedded design (d) Hybrid design

95Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Multiple Choice Questions
5.6 Temporal cohesion means

(a) Cohesion between temporary variables

(b) Cohesion between local variable

(c) Cohesion with respect to time

(d) Coincidental cohesion

5.7 Functional cohesion means

(a) Operations are part of single functional task and are placed in same procedures

(b) Operations are part of single functional task and are placed in multiple procedures

(c) Operations are part of multiple tasks

(d) None of the above

5.8 When two modules refer to the same global data area, they are related as

(a) External coupled (b) Data coupled

(c) Content coupled (d) Common coupled

5.9 The module in which instructions are related through flow of control is

(a) Temporal cohesion (b) Logical cohesion

(c) Procedural cohesion (d) Functional cohesion

96Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Multiple Choice Questions

5.10 The relationship of data elements in a module is called

(a) Coupling (b) Cohesion

(c) Modularity (d) None of the above

5.12 The extent to which different modules are dependent upon each other is called

(a) Coupling (b) Cohesion

(c) Modularity (d) Stability

5.11 A system that does not interact with external environment is called

(a) Closed system (b) Logical system

(c) Open system (d) Hierarchal system

97Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

5.1 What is design? Describe the difference between conceptual design and
technical design.

5.2 Discuss the objectives of software design. How do we transform an
informal design to a detailed design?

5.3 Do we design software when we “write” a program? What makes
software design different from coding?

5.4 What is modularity? List the important properties of a modular system.

5.5 Define module coupling and explain different types of coupling.

5.6 Define module cohesion and explain different types of cohesion.

5.7 Discuss the objectives of modular software design. What are the effects
of module coupling and cohesion?

5.8 If a module has logical cohesion, what kind of coupling is this module
likely to have with others?

5.9 What problems are likely to arise if two modules have high coupling?

98Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

5.10 What problems are likely to arise if a module has low cohesion?

5.11 Describe the various strategies of design. Which design strategy is most
popular and practical?

5.12 If some existing modules are to be re-used in building a new system,
which design strategy is used and why?

5.13 What is the difference between a flow chart and a structure chart?

5.14 Explain why it is important to use different notations to describe
software designs.

5.15 List a few well-established function oriented software design
techniques.

5.16 Define the following terms: Objects, Message, Abstraction, Class,
Inheritance and Polymorphism.

5.17 What is the relationship between abstract data types and classes?

99Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

5.18 Can we have inheritance without polymorphism? Explain.

5.19 Discuss the reasons for improvement using object-oriented design.

5.20 Explain the design guidelines that can be used to produce “good
quality” classes or reusable classes.

5.21 List the points of a simplified design process.

5.22 Discuss the differences between object oriented and function oriented
design.

5.23 What documents should be produced on completion of the design
phase?

5.24 Can a system ever be completely “decoupled”? That is, can the degree
of coupling be reduced so much that there is no coupling between
modules?

