ALGORITHM ANALYSIS & DESIGN
ETCS 254

Faculty:

Student Name:

Mr. Sandeep Tayal

Roll No. :

Semester:

 IV (B.Tech CSE)

Group:

4C789
[image: image1.png]N
RAJA AGR,
A Sy
&y

p
#s
&
)
m
UTE oF
T
ED\‘\““\\‘;\

Maharaja Agrasen Institute Of Technology

Sector – 22, Rohini, New Delhi – 110085

(Affiliated to Guru Gobind Singh Indraprastha University)
Algorithm Analysis and Design Lab
PRACTICAL RECORD

PAPER CODE

:
 ETCS-254
Name of the student

:

University Roll No.

:

Branch

:
B.Tech CSE (IInd Shift)
Section/ Group :
4C789

PRACTICAL DETAILS

	Program No.
	Program
	Date
	Teacher Signature
	Marks

(10)

	1.
	
	
	
	

	2.
	
	
	
	

	3.
	
	
	
	

	4.
	
	
	
	

	5.
	
	
	
	

	6.
	
	
	
	

	7.
	
	
	
	

	8.
	
	
	
	

	9.
	
	
	
	

	10.
	
	
	
	

	11.
	
	
	
	

	12.
	
	
	
	

	13.
	
	
	
	

	14.
	
	
	
	

	15.
	
	
	
	

1. TO ANALYZE COMPLEXITY OF INSERTION SORT ALGORITHM :
ALGORITHM:

Let A be a linear array of n numbers A [1], A [2], A [3], ,A [n]......TEMP be a temporary

variable to interchange the two values. Pos is the control variable to hold the position of

each pass.

Step 1: Input an array A of n numbers

Step 2: Initialize i = 1 and repeat through steps 4 by incrementing i by one.

(a) If (i < = n – 1)

(b) TEMP = A [I],

(c) Pos = i – 1

Step 3: Repeat the step 3 if (TEMP < A[Pos] and (Pos >= 0))

(a) A [Pos+1] = A [Pos]

(b) Pos = Pos-1

Step 4: A [Pos +1] = TEMP

Step 5: Exit.

ANALYSIS:
The running time of the algorithm is the sum of running times for each statement executed. So, we have

T(n) = c1n + c2 (n − 1) + c4 (n − 1) + c5 ∑2≤j≤ n (tj) + c6 ∑2≤j≤ n (tj − 1) + c7 ∑2≤j≤ n (tj − 1)
+ c8 (n − 1)

In the above equation we supposed that tj be the number of times the while-loop is executed for that value of j.

Worst-Case
The worst-case occurs if the array is sorted in reverse order i.e., in decreasing order. In the reverse order, we always find that A[i] is greater than the key in the while-loop test. So, we must compare each element A[j] with each element in the entire sorted subarray A[1 .. j − 1] and so tj = j for j = 2, 3, ..., n. Equivalently, we can say that since the while-loop exits because i reaches to 0, there is one additional test after (j − 1) tests. Therefore, tj = j for j = 2, 3, ..., n and the worst-case running time can be computed using equation (1) as follows:

T(n) = c1n + c2 (n − 1) + c4 (n − 1) + c5 ∑2≤j≤ n (j) + c6 ∑2≤j≤ n(j − 1) + c7 ∑2≤j≤ n(j − 1)
+ c8 (n − 1)

And using the summations, we have

T(n) = c1n + c2 (n − 1) + c4 (n − 1) + c5 ∑2≤j≤ n [n(n +1)/2 + 1] + c6 ∑2≤j≤ n [n(n − 1)/2]
+ c7 ∑2≤j≤ n [n(n − 1)/2] + c8 (n − 1)

T(n) = (c5/2 + c6/2 + c7/2) n2 + (c1 + c2 + c4 + c5/2 − c6/2 − c7/2 + c8) n − (c2 + c4 + c5 + c8)

This running time can be expressed as (an2 + bn + c) for constants a, b, and c that again depend on the statement costs ci. Therefore, T(n) is a quadratic function of n.

T(n) = an2 + bn + c = O(n2)
Best Case:

The best case occurs if the array is already sorted. For each j = 2, 3, ..., n, we find that A[i] less than or equal to the key when i has its initial value of (j − 1). In other words, when i = j −1, always find the key A[i] upon the first time the WHILE loop is run.

Therefore, tj = 1 for j = 2, 3, ..., n and the best-case running time can be computed using equation (1) as follows:

T(n) = c1n + c2 (n − 1) + c4 (n − 1) + c5 ∑2≤j≤ n (1) + c6 ∑2≤j≤ n (1 − 1) + c7 ∑2≤j≤ n (1 − 1)
+ c8 (n − 1)

T(n) = c1n + c2 (n − 1) + c4 (n − 1) + c5 (n − 1) + c8 (n − 1)

T(n) = (c1 + c2 + c4 + c5 + c8) n + (c2 + c4 + c5 + c8)

This running time can be expressed as an + b for constants a and b that depend on the statement costs ci. Therefore, T(n) it is a linear function of n.

T(n) = an + b = O(n)

IMPLEMENTATION:
#include<iostream.h>

#include<conio.h>

void main()

{clrscr();

int a[20],t,n,temp,j;

cout<<"\nEnter the number of elements of Array: ";

cin>>n;

cout<<"\nEnter the elements of the array: "<<endl;

for(int i=0;i<n;i++)

{cin>>a[i];}

cout<<"\nThe array is: ";

for(i=0;i<n;i++)

{cout<<" "<<a[i];}

cout<<"\n";

for(i=0;i<n;i++)

{temp=a[i];

 j=i-1;

 while(temp<a[j] && j>=0)

{a[j+1]=a[j];

 j=j-1;

}

 a[j+1]=temp;

 cout<<"\n The array after "<<i+1<<" iteration is : ";

 for(int k=0;k<n;k++)

{cout<<" "<<a[k];}

}

cout<<"\nThe sorted array is\n "<<endl;

for(i=0;i<n;i++)

{cout<<"\t"<<a[i];}

getch();

}

OUTPUT:

Enter the number of elements of Array: 5

Enter the elements of the array:

2

5

3

7

1

The array is:
2
5
3
7
1

The array after 1 iteration is:

2
5
3
7
1

The array after 2 iteration is:

2
5
3
7
1
The array after 3 iteration is:

2
3
5
7
1
The array after 4 iteration is:

2
3
5
7
1
The array after 5 iteration is:

1
2
3
5
7
The sorted array is

1
2
3
5
7

2. TO ANALYZE COMPLEXITY OF QUICK SORT ALGORITHM :
ALGORITHM:

function quicksort(array)

 if length(array) > 1

 pivot := select any element of array

 left := first index of array

 right := last index of array

 while left ≤ right

 while array[left] < pivot

 left := left + 1

 while array[right] > pivot

 right := right - 1

 if left ≤ right

 swap array[left] with array[right]

 left := left + 1

 right := right - 1

 quicksort(array from first index to right)

 quicksort(array from left to last index)

ANALYSIS:
As T(N) = T(i) + T(N - i -1) + cN

The time to sort the file is equal to the time to sort the left partition with i elements, plus

the time to sort the right partition with N-i-1 elements, plus the time to build the partitions

Worst case

The pivot is the smallest element

T(N) = T(N-1) + cN,

N > 1

T(N-1) = T(N-2) + c(N-1)

T(N-2) = T(N-3) + c(N-2)

T(N-3) = T(N-4) + c(N-3)

T(2) = T(1) + 2c
Add all equations:

T(N) + T(N-1) + T(N-2) + … + T(2)

= T(N-1) + T(N-2) + … + T(2) + T(1) + c(N) + c(N-1) … + c.2

T(N) = T(1) + c(2 + 3 + … + N)

T(N) = 1 + c(N(N+1)/2 -1)

Therefore T(N) = O(N2)
Best-case :

The pivot is in the middle

T(N) = 2T(N/2) + cN

Divide by N:

T(N) / N = T(N/2) / (N/2) + c

Telescoping:

T(N/2) / (N/2) = T(N/4) / (N/4) + c

T(N/4) / (N/4) = T(N/8) / (N/8) + c

……

T(2) / 2 = T(1) / (1) + c

Add all equations and solving we get:

T(N)/N = T(1) + cLogN = 1 + cLogN

T(N) = N + cNLogN

Therefore T(N) = O(NlogN)
Average case :
The average value of T(i) is 1/N times the sum of T(0) through T(N-1)

1/N ∑ T(j), j = 0 thru N-1

T(N) = 2/N (∑T(j)) + cN

Multiply by N

NT(N) = 2(∑ T(j)) + cN*N

To remove the summation, we rewrite the equation for N-1:

(N-1)T(N-1) = 2(∑ T(j)) + c(N-1)2, j = 0 thru N-2

and subtract:

NT(N) - (N-1)T(N-1) = 2T(N-1) + 2cN -c

Prepare for telescoping. Rearrange terms, drop the insignificant c:

NT(N) = (N+1)T(N-1) + 2cN

Divide by N(N+1):

T(N)/(N+1) = T(N-1)/N + 2c/(N+1)

Telescope:

T(N)/(N+1) = T(N-1)/N + 2c/(N+1)

T(N-1)/(N) = T(N-2)/(N-1)+ 2c/(N)

T(N-2)/(N-1) = T(N-3)/(N-2) + 2c/(N-1)

….

T(2)/3 = T(1)/2 + 2c /3

Add the equations and cross equal terms:

T(N)/(N+1) = T(1)/2 +2c ∑ (1/j), j = 3 to N+1

T(N) = (N+1)(1/2 + 2c ∑(1/j))

The sum ∑ (1/j), j =3 to N-1, is about LogN

Thus T(N) = O(NlogN)

IMPLEMENTATION:
#include<iostream.h>

#include<conio.h>

int partition(int* ,int ,int);

void quick(int* ,int ,int);

void quick(int arr[],int lower,int higher)

{int j;

if(higher>lower)

{j=partition(arr,lower,higher);

 quick(arr,lower,j-1);

 quick(arr,j+1,higher);

}

}

int partition(int arr[],int lower,int higher)

{

 int j,lft,rgt,temp;

lft=lower+1;

rgt=higher;

j=arr[lower];

while(lft<=rgt)

{while(arr[lft]<j)

{lft++;}

 while(arr[rgt]>j)

{rgt--;}

 if(lft<rgt)

{temp=arr[lft];

 arr[lft]=arr[rgt];

 arr[rgt]=temp;

}

}

temp=arr[lower];

arr[lower]=arr[rgt];

arr[rgt]=temp;

return rgt;

}

main()

{

 //clrscr();

int i,n,a[20],high,low;

cout<<"\nEnter no of elements of the array: ";

cin>>n;

low=0;

high=n-1;

cout<<"\nEnter the elements of the array: "<<endl;

for(i=0;i<n;i++)

{cin>>a[i];}

quick(a,low,high);

cout<<"\nThe sorted array is: ";

for(i=0;i<n;i++)

{cout<<" "<<a[i];}

getch();

return 0;

}
OUTPUT:

Enter no. of elements of the array: 5

Enter the elements of the array:

-1

7

3

0

-9

The sorted array is:
-9
-1
0
3
7

3. TO ANALYZE COMPLEXITY OF MERGE SORT ALGORITHM :
ALGORITHM:

function merge_sort(m)

 if length(m) ≤ 1

 return m

 var list left, right, result

 var integer middle = length(m) / 2

 for each x in m up to middle

 add x to left

 for each x in m after or equal middle

 add x to right

 left = merge_sort(left)

 right = merge_sort(right)

 result = merge(left, right)

 return result

function merge(left,right)

 var list result

 while length(left) > 0 or length(right) > 0

 if length(left) > 0 and length(right) > 0

 if first(left) ≤ first(right)

 append first(left) to result

 left = rest(left)

 else
 append first(right) to result

 right = rest(right)

 else if length(left) > 0

 append first(left) to result

 left = rest(left)

 else if length(right) > 0

 append first(right) to result

 right = rest(right)

 end of while
 return result

ANALYSIS

When n ≥ 2, time for merge sort steps:

· Divide
: Just compute q as the average of p and r, which takes constant time i.e. Θ(1).

· Conquer: Recursively solve 2 sub-problems, each of size n/2, which is 2T(n/2).

· Combine: MERGE on an n-element sub-array takes Θ(n) time.

Summed together they give a function that is linear in n, which is Θ(n). Therefore, the recurrence for merge sort running time is

[image: image2.png]e s,
L= {27('(n/2)+®(n) i > 1.

Hence, complexity of merge sort is

[image: image3.png]T(n){ on) ifn =1
O(nlog,n) ifn>1

A drawback of Merge sort is that it needs an additional space of Θ(n) for the temporary array .

IMPLEMENTATION:
#include <iostream.h>

#include <conio.h>

void MergeSort(int arrays[], int temp[], int size);

void m_sort(int arrays[], int temp[], int left, int right);

void merge(int arrays[], int temp[], int left, int mid, int right);

int arrays[30];

int temp[30];

void MergeSort(int arrays[], int temp[], int size)

{m_sort(arrays,temp,0,size-1);}

void m_sort(int arrays[], int temp[], int left, int right)

{int mid;

 if(right>left)

{mid=(right+left)/2;

 m_sort(arrays,temp,left,mid);

 m_sort(arrays,temp,mid+1,right);

 merge(arrays,temp,left,mid+1,right);

}

}

void merge(int arrays[], int temp[], int left, int mid, int right)

{int i,left_end,num_ele,temp_pos;

 left_end=mid-1;

 temp_pos=left;

 num_ele=right-left+1;

 while((left<=left_end)&&(mid<=right))

{if(arrays[left]<=arrays[mid])

{temp[temp_pos]=arrays[left];

 temp_pos=temp_pos+1;

 left=left+1;

}

 else

{temp[temp_pos]=arrays[mid];

 temp_pos=temp_pos+1;

 mid=mid+1;

}

}

while(left<=left_end)

{temp[temp_pos]=arrays[left];

 left=left+1;

 temp_pos=temp_pos+1;

}

while(mid<=right)

{temp[temp_pos]=arrays[mid];

 mid=mid+1;

 temp_pos=temp_pos+1;

}

for(i=0;i<=num_ele;i++)

{arrays[right]=temp[right];

 right=right-1;

}

}

void main()

{clrscr();

int i,n;

cout<<" \nEnter the number of elements: ";

cin>>n;

cout<<"\n\nEnter the elements: "<<endl;

for(i=0;i<n;i++)

 {cin>>arrays[i];}

cout<<" \n\n\nThe Unsorted array is -> \n\n\t\t";

for(i=0;i<n;i++) // Before Merging

{cout<<arrays[i]<<" ";}

MergeSort(arrays,temp,n);

cout<<" \n\n\nThe Sorted array is -> \n\n\t\t";

for(i=0;i<n;i++) //After merging

{cout<<arrays[i]<<" ";}

getch();

}

OUTPUT:

Enter the number of elements: 6
Enter the elements:

3

2

1

4

6

5

The Unsorted array is ->

3
2
1
4
6
5

The Sorted array is ->

1
2
3
4
5
6

4. PROGRAM TO IMPLEMENT LCS PROBLEM USING DYNAMIC PROGRAMMING:

ALGORITHM AND ANALYSIS:

The longest common subsequence problem (LCS) is finding a longest sequence which is a subsequence of all sequences in a set of sequences (often just two).

Let two sequences be defined as follows: X = (x1, x2...xm) and Y = (y1, y2...yn). The prefixes of X are X1, 2,...m; the prefixes of Y are Y1, 2,...n. Let LCS(Xi, Yj) represent the set of longest common subsequence of prefixes Xi and Yj. This set of sequences is given by the following.

[image: image4.png]0 if i=0orj=
LCS (X, Y;) = { LCS (Ximy, Yjm1) +1 it =y;
longest (LC'S (X;,Y;1),LCS (X;1,Y;)) ifz; #y;

COMPUTING THE LENGTH OF THE LCS

The below function takes as input sequences X[1..m] and Y[1..n] computes the LCS between X[1..i] and Y[1..j] for all 1 ≤ i ≤ m and 1 ≤ j ≤ n, and stores it in C[i,j]. C[m,n] will contain the length of the LCS of X and Y.

function LCS(X[1..m], Y[1..n])

 C = array(0..m, 0..n)

 for i := 1..m

 for j := 1..n

 if X[i] = Y[j]

 C[i,j] := C[i-1,j-1] + 1

 else:

 C[i,j] := max(C[i,j-1], C[i-1,j])

 return C

BACKTRACKING

The following function backtracks the choices taken when computing the C table. If the last characters in the prefixes are equal, they must be in an LCS. If not, check what gave the largest LCS of keeping xi and yj, and make the same choice. Just choose one if they were equally long.

Call the function with i=m and j=n.

function backTrack(C[0..m,0..n], X[1..m], Y[1..n], i, j)

 if i = 0 or j = 0

 return ""

 else if X[i] = Y[j]

 return backTrack(C, X, Y, i-1, j-1) + X[i]

 else

 if C[i,j-1] > C[i-1,j]

 return backTrack(C, X, Y, i, j-1)

 else

 return backTrack(C, X, Y, i-1, j)

If choosing x[i] and y[j] would give an equally long result, both resulting subsequences should be shown. This is returned as a set by this function. Notice that this function is not polynominal, as it might branch in almost every step if the strings are similar.

function backTrackAll(C[0..m,0..n], X[1..m], Y[1..n], i, j)

 if i = 0 or j = 0

 return {}

 else if X[i] = Y[j]:

 return {Z + X[i-1] for all Z in backTrackAll(C, X, Y, i-1, j-1)}

 else:

 R := {}

 if C[i,j-1] ≥ C[i-1,j]:

 R := R ∪ backTrackAll(C, X, Y, i, j-1)

 if C[i-1,j] ≥ C[i,j-1]:

 R := R ∪ backTrackAll(C, X, Y, i-1, j)

 return R

COMPLEXITY:
For the case of two sequences of n and m elements, the running time of the dynamic programming approach is O(n × m).

IMPLEMENTATION:

#include<stdio.h>

#include<conio.h>

#include<string.h>

void print_lcs(char b[][20],char x[],int i,int j)

{

 if(i==0 || j==0)

 return;

 if(b[i][j]=='c')

 {

 print_lcs(b,x,i-1,j-1);

 printf(" %c",x[i-1]);

 }

 else if(b[i][j]=='u')

 print_lcs(b,x,i-1,j);

 else

 print_lcs(b,x,i,j-1);

}

void lcs_length(char x[],char y[])

{

 int m,n,i,j,c[20][20];

 char b[20][20];

 m=strlen(x);

 n=strlen(y);

 for(i=0;i<=m;i++)

 c[i][0]=0;

 for(i=0;i<=n;i++)

 c[0][i]=0;

 for(i=1;i<=m;i++)

 for(j=1;j<=n;j++)

 {

if(x[i-1]==y[j-1])

 {

 c[i][j]=c[i-1][j-1]+1;

 b[i][j]='c'; //c stands for left upright cross

 }

 else if(c[i-1][j]>=c[i][j-1])

 {

 c[i][j]=c[i-1][j];

 b[i][j]='u'; //u stands for upright or above

 }

 else

 {

 c[i][j]=c[i][j-1];

 b[i][j]='l'; //l stands for left

 }

}

 print_lcs(b,x,m,n);

 }

void lcs()

{

 int i,j;

 char x[20],y[20];

 printf("1st sequence:");

 gets(x);

 printf("2nd sequence:");

 gets(y);

 printf("\nLCS are:\n");

 lcs_length(x,y);

 printf("\n");

 lcs_length(y,x);

 }

main()

{

 char ch;

 do

 {

 lcs();

 printf("\nContinue(y/n):");

 ch=getch();

 }

 while(ch=='y'||ch=='Y');

 getch();

 return 0;

}

OUTPUT:

1st sequence: AGTBAHATGHA

2nd sequence: AGBAHATAGAH

LCS are:
A G B A H A T G H

A G B A H A T G A

Continue(y/n): n
5. PROGRAM TO IMPLEMENT MATRIX CHAIN MULTIPLICAYION PROBLEM USING DYNAMIC PROGRAMMING
PROBLEM: Multiplying a Sequence of Matrices . Suppose a long sequence of matrices A x B x C x D... has to be multiplied

Multiplying an X x Y matrix by a Y x Z matrix (using the common algorithm) takes X x Y x Z multiplications.

[image: image5.png]

 [image: image6.png]

In matrix multiplication it is better to avoid big intermediate matrices, and since matrix multiplication is associative, we can parenthesize however we want.

Matrix multiplication is not commutative, so the order of the matrices can not be permuted without changing the result. Example:-

Consider A x B x C x D, where A is 30 x 1, B is 1 x 40, C is 40 x 10, and D is 10 x 25.

There are three possible parenthesizations:

[image: image7.png]N1 x40+ 30 x 40 x 10+ 30 x 10 x 20

[image: image8.png]N L XA +40 x 10 x 20+ 30 x 40 x 20

[image: image9.png]XMW1+ 1I x 1O X2 +30x 1 x 20

The order makes a big difference in real computation. Let M(i,j) be the minimum number of multiplications necessary to compute [image: image10.png]

.

The key observations are

· The outermost parentheses partition the chain of matricies (i,j) at some k.

· The optimal parenthesization order has optimal ordering on either side of k.

A recurrence for this is:

[image: image11.png]Minigrgs-|MELE) + Mk +1,5) + 41414
o

If there are n matrices, there are n+1 dimensions.

A direct recursive implementation of this will be exponential, since there is a lot of duplicated work as in the Fibonacci recurrence.

Divide-and-conquer is seems efficient because there is no overlap, but ...

There are only [image: image12.png]

substrings between 1 and n. Thus it requires only [image: image13.png]B(#%)

space to store the optimal cost for each of them.

All the possibilities can be represented in a triangle matrix. We can also store the value of k in another triangle matrix to reconstruct to order of the optimal parenthesisation.

The diagonal moves up to the right as the computation progresses. On each element of the kth diagonal |j-i| = k.

ALGORITHM:-

for i=1 to n do M[i, j]=0

for diagonal=1 to n-1

for i=1 to n-diagonal do

 j=i+diagonal

 [image: image14.png]MIi, f] = ralnp [M[4, & + M[E + 1,] + di-1dd

faster(i,j)=k
return [m(1, n)]

Pseudocode:

ShowOrder(i, j)

if (i=j)
 write (Ai)

else

 k=factor(i, j)

 write “('”

 ShowOrder(i, k)

 write “*”

 ShowOrder (k+1, j)

 write “)”
IMPLEMENTAION:
#include<iostream.h>

#include<conio.h>

void print(int s[10][10],int a,int b);

void main()

{

 clrscr();

 int x,i,j,n,l,k,a[10],b[10],m[10][10],q,p[10],s[10][10];

 cout<<"\n Enter the number of matrices: ";

 cin>>n;

 cout<<"\n Enter the rows of matrices : \n";

 for(i=1;i<=n;i++)

 { cout<<" "<<i<<" -: ";

 cin>>a[i];}

 cout<<"\n Enter the columns of matrices : \n";

 for(j=1;j<=n;j++)

 { cout<<" "<<j<<" -: ";

 cin>>b[j]; }

 p[0]=a[1];

 for(x=1;x<=n;x++)

 p[x]=b[x];

 cout<<"\n Matrices are -: ";

 for(x=1;x<=n;x++)

 cout<<"\nA["<<x<<"]"<< " = " <<a[x]<<" * "<<b[x];

 // display the size of matrices

 for(i=1;i<=n;i++)

 m[i][i]=0;

 for(l=2;l<=n;l++)

 {

 for(i=1;i<=n-l+1;i++)

 {

 j=i+l-1;

 m[i][j]=1000000;

 for(k=i;k<=j-1;k++)

 {

q=m[i][k]+m[k+1][j]+p[i-1]*p[k]*p[j];

if(q<m[i][j])

{

 m[i][j]=q;

 s[i][j]=k;

}

 }

 }

 }

 cout<<"\n\n Order of Multiplication -: ";

 print(s,i-1,j);

 getch();}

void print(int s[10][10],int a,int b)

{

 if(a==b)

 {

 cout<<"A"<<a;

 }

 else

 {

 cout<<"(";

 print(s,a,s[a][b]);

 print(s,s[a][b]+1,b);

 cout<<")";

 }

}

OUTPUT
Enter the number of matrices: 3

Enter the rows of matrices:

1-:2

2-:3

3-:4

Enter the columns of matrices:

1-:3

2-:4

3-:2

Matrices are -:

2*3 3*4 4*2

Order of Multiplication -:

(A1 (A2 A3))

6. PROGRAM TO IMPLEMENT STRASSEN’S MATRIX MULTIPLICATION:
In the mathematical discipline of linear algebra, the Strassen algorithm, named after Volker Strassen, is an algorithm used for matrix multiplication. It is asymptotically faster than the standard matrix multiplication algorithm, but slower than the fastest known algorithm.

ALGORITHM:
Let A, B be two square matrices over a field F. We want to calculate the matrix product C as

[image: image15.png]C=AB A BCegF"**

If the matrices A, B are not of type 2n x 2n we fill the missing rows and columns with zeros.

We partition A, B and C into equally sized block matrices

[image: image16.png]

with
[image: image17.png]A;;B;;, C;; e P2

then

[image: image18.png]Ci1=A11B11 + A0

[image: image19.png]

[image: image20.png]

[image: image21.png]

With this construction we have not reduced the number of multiplications. We still need 8 multiplications to calculate the Ci,j matrices, the same number of multiplications we need when using standard matrix multiplication.

Now comes the important part. We define new matrices

[image: image22.png]

[image: image23.png]

[image: image24.png]Ai1(B12—Bas)

[image: image25.png]M, = Ay5(Bsy — By)

[image: image26.png]

[image: image27.png]As1—A1)(Bia+ Byo)

[image: image28.png]

which are then used to express the Ci,j in terms of Mk. Because of our definition of the Mk we can eliminate one matrix multiplication and reduce the number of multiplications to 7 (one multiplications for each Mk) and express the Ci,j as

[image: image29.png]

[image: image30.png]

[image: image31.png]01 =

[image: image32.png]

We iterate this division process n-times until the submatrices degenerate into numbers.

Practical implementations of Strassen's algorithm switch to standard methods of matrix multiplication for small enough submatrices, for which they are more efficient; the overhead of Strassen's algorithm implies that these "small enough" submatrices are actually quite large, well into thousands of elements.

ANALYSIS:

The standard matrix multiplications takes [image: image33.png]

 multiplications of the elements in the field F. We ignore the additions needed because, depending on F, they can be much faster than the multiplications in computer implementations, especially if the sizes of the matrix entries exceed the word size of the machine.

With the Strassen algorithm we can reduce the number of multiplications to[image: image34.png]

.

The reduction in the number of multiplications however comes at the price at a somewhat reduced numeric stability.

IMPLEMENTATION:

#include<iostream.h>

#include<conio.h>

void main()

{int a[2][2],b[2][2],c[2][2],p,q,r,s,t,u,v,i,j;

clrscr();

cout<<"\nEnter the 1st matrix<2X2>:";

for(i=0;i<2;i++)

{for(j=0;j<2;j++)

cin>>a[i][j];

}

cout<<"\nEnter the 2nd matrix<2X2>:";

for(i=0;i<2;i++)

{for(j=0;j<2;j++)

cin>>b[i][j];

}

p=(a[0][0]+a[1][1])*(b[0][0]+b[1][1]);

q=(a[1][0]+a[1][1])*b[0][0];

r=a[0][0]*(b[0][1]-b[1][1]);

s=a[1][1]*(b[1][0]-b[0][0]);

t=(a[0][0]+a[0][1])*b[1][1];

u=(a[1][0]-a[0][0])*(b[0][0]+b[0][1]);

v=(a[0][1]-a[1][1])*(b[1][0]+b[1][1]);

c[0][0]=p+s-t+v;

c[0][1]=r+t;

c[1][0]=q+s;

c[1][1]=p+r-q+u;

cout<<"\nProduct matrix:\n";

for(i=0;i<2;i++)

{for(j=0;j<2;j++)

cout<<c[i][j]<<" ";

cout<<endl;

}

getch();

}

OUTPUT:

Enter the 1st matrix<2X2>:

1 1

1 1

Enter the 2nd matrix<2X2>:

1 1

1 1

Product matrix:

2 2

2 2
7. PROGRAM TO IMPLEMENT OBST USING DYNAMIC PROGRAMMING:
Construct a binary search tree of all keys such that the total cost of all the searches is as small as possible. The cost of a BST node is level of that node multiplied by its frequency.
Given:
pi = prob. of access for Ai (i = 1, n)

qi = prob. of access for value between Ai and Ai +1 (i = 0, n)

[p0 = pn+1 = 0]

root[i, j] = root of optimal tree on range qi-1 to qj
e[i, j] = cost of tree rooted at root[i, j]; this cost is the probability of looking for one of the

values (or gaps) in the range times the expected cost of doing in that tree.

Algorithm computes root’s and e’s by increasing size, i.e. by increasing value of (j-i).

So

root[i, i] = i [Initialization, i is the only key value in the range, so it must be the root]

e[i, i] = qi-1 + pi + qi [the probability of searching in this tree with one internal node]

If r = root; L = left subtree; R = right subtree;

W[tree] = probability of being in tree = probability of accessing root.

Then

C[tree rooted at r] = W[tree] + e[L] + e[R]
It will clearly be handy to have W[i,j], the probability of accessing any node qi−1 ,…, qj or

pi,…. , pj.
So [image: image35.png]WIi. j1= ZPk* qu

k=1

These are easy to compute in O(n2) time by computing
W [i, j + 1] as W [i, j] + pj+1 + qj+1.

[image: image36.png]rooffi, jl=1
i, j1=WIi, jl1+ g, + di+1, j] {initialize with i as root}
for r=i+1 to j do {if r is abetter root, take it .. this line will be editted later}
ec = W] +elir] +p, +dr+1]

if ec < ij]then

begin

di jl=ec
roof[i, fl=r
end

The approach of storing computed values and reusing them as required is known as MEMOIZATION, if a value of root[i, j] or e[i, j] has been computed ... use it; otherwise compute it and remember it. Hence an O(n3) algorithm as each of the O(n2) values takes O(n) time to compute given values on smaller ranges.

IMPLEMENTATION:

#include<iostream.h>

#include <stdio.h>

#include <limits.h>

#include<conio.h>

// A utility function to get sum of array elements freq[i] to freq[j]

int sum(int freq[], int i, int j);

/* A Dynamic Programming based function that calculates minimum cost of

 a Binary Search Tree. */

int optimalSearchTree(int keys[], int freq[], int n)

{

 /* Create an auxiliary 2D matrix to store results of subproblems */

 int cost[n][n];

 /* cost[i][j] = Optimal cost of binary search tree that can be

 formed from keys[i] to keys[j].

 cost[0][n-1] will store the resultant cost */

 // For a single key, cost is equal to frequency of the key

 for (int i = 0; i < n; i++)

 cost[i][i] = freq[i];

 // Now we need to consider chains of length 2, 3,

 // L is chain length.

 for (int L=2; L<=n; L++)

 {

 // i is row number in cost[][]

 for (int i=0; i<=n-L+1; i++)

 {

 // Get column number j from row number i and chain length L

 int j = i+L-1;

 cost[i][j] = INT_MAX;

 // Try making all keys in interval keys[i..j] as root

 for (int r=i; r<=j; r++)

 {

 // c = cost when keys[r] becomes root of this subtree

 int c = ((r > i)? cost[i][r-1]:0) +

 ((r < j)? cost[r+1][j]:0) +

 sum(freq, i, j);

 if (c < cost[i][j])

 cost[i][j] = c;

 }

 }

 }

 return cost[0][n-1];

}

// A utility function to get sum of array elements freq[i] to freq[j]

int sum(int freq[], int i, int j)

{

 int s = 0;

 for (int k = i; k <=j; k++)

 s += freq[k];

 return s;

}

// Driver program to test above functions

int main()

{

 int i;

 int keys[5];

 int freq[5];

 printf("Enter five keys with their corresponding frequency :\n");

printf("KEY
FREQUENCY\n");

 for(i=0;i<5;i++)

 {

 scanf("%d",&keys[i]);

 scanf("%d",&freq[i]);

 }

 int n = sizeof(keys)/sizeof(keys[0]);
printf("Cost of Optimal BST is %d ", optimalSearchTree(keys, freq, n));

 getch();

 return 0;

}

OUTPUT:

Enter five keys with their corresponding frequency:
KEY

FREQUENCY

1

87

2

30

3

56

4

32

5

70

Cost of Optimal BST is 556
8. PROGRAM TO IMPLEMENT HUFFMAN CODING:
Huffman coding is an entropy encoding algorithm used for lossless data compression. The term refers to the use of a variable-length code table for encoding a source symbol (such as a character in a file) where the variable-length code table has been derived in a particular way based on the estimated probability of occurrence for each possible value of the source symbol. It was developed by David A. Huffman while he was a Ph.D. student at MIT.
ALGORITHM & ANALYSIS:

The simplest construction algorithm uses a priority queue where the node with lowest probability is given highest priority:

· Create a leaf node for each symbol and add it to the priority queue.

· While there is more than one node in the queue:

· Remove the two nodes of highest priority (lowest probability) from the queue

· Create a new internal node with these two nodes as children and with probability equal to the sum of the two nodes' probabilities.

· Add the new node to the queue.

· The remaining node is the root node and the tree is complete.

Since efficient priority queue data structures require O(log n) time per insertion, and a tree with n leaves has 2n−1 nodes, this algorithm operates in O(n log n) time, where n is the number of symbols.

IMPLEMENTATION:

#include <stdio.h>

#include <stdlib.h>

// This constant can be avoided by explicitly calculating height of Huffman Tree

#define MAX_TREE_HT 100

// A Huffman tree node

struct MinHeapNode

{

 char data; // One of the input characters

 unsigned freq; // Frequency of the character

 struct MinHeapNode *left, *right; // Left and right child of this node

};

// A Min Heap: Collection of min heap (or Hufmman tree) nodes

struct MinHeap

{

 unsigned size; // Current size of min heap

 unsigned capacity; // capacity of min heap

 struct MinHeapNode **array; // Attay of minheap node pointers

};

// A utility function allocate a new min heap node with given character

// and frequency of the character

struct MinHeapNode* newNode(char data, unsigned freq)

{

 struct MinHeapNode* temp =

 (struct MinHeapNode*) malloc(sizeof(struct MinHeapNode));

 temp->left = temp->right = NULL;

 temp->data = data;

 temp->freq = freq;

 return temp;

}

// A utility function to create a min heap of given capacity

struct MinHeap* createMinHeap(unsigned capacity)

{

 struct MinHeap* minHeap =

 (struct MinHeap*) malloc(sizeof(struct MinHeap));

 minHeap->size = 0; // current size is 0

 minHeap->capacity = capacity;

 minHeap->array =

 (struct MinHeapNode**)malloc(minHeap->capacity * sizeof(struct MinHeapNode*));

 return minHeap;

}

// A utility function to swap two min heap nodes

void swapMinHeapNode(struct MinHeapNode** a, struct MinHeapNode** b)

{

 struct MinHeapNode* t = *a;

 *a = *b;

 *b = t;

}

// The standard minHeapify function.

void minHeapify(struct MinHeap* minHeap, int idx)

{

 int smallest = idx;

 int left = 2 * idx + 1;

 int right = 2 * idx + 2;

 if (left < minHeap->size &&

 minHeap->array[left]->freq < minHeap->array[smallest]->freq)

 smallest = left;

 if (right < minHeap->size &&

 minHeap->array[right]->freq < minHeap->array[smallest]->freq)

 smallest = right;

 if (smallest != idx)

 {

 swapMinHeapNode(&minHeap->array[smallest], &minHeap->array[idx]);

 minHeapify(minHeap, smallest);

 }

}

// A utility function to check if size of heap is 1 or not

int isSizeOne(struct MinHeap* minHeap)

{

 return (minHeap->size == 1);

}

// A standard function to extract minimum value node from heap

struct MinHeapNode* extractMin(struct MinHeap* minHeap)

{

 struct MinHeapNode* temp = minHeap->array[0];

 minHeap->array[0] = minHeap->array[minHeap->size - 1];

 --minHeap->size;

 minHeapify(minHeap, 0);

 return temp;

}

// A utility function to insert a new node to Min Heap

void insertMinHeap(struct MinHeap* minHeap, struct MinHeapNode* minHeapNode)

{

 ++minHeap->size;

 int i = minHeap->size - 1;

 while (i && minHeapNode->freq < minHeap->array[(i - 1)/2]->freq)

 {

 minHeap->array[i] = minHeap->array[(i - 1)/2];

 i = (i - 1)/2;

 }

 minHeap->array[i] = minHeapNode;

}

// A standard funvtion to build min heap

void buildMinHeap(struct MinHeap* minHeap)

{

 int n = minHeap->size - 1;

 int i;

 for (i = (n - 1) / 2; i >= 0; --i)

 minHeapify(minHeap, i);

}

// A utility function to print an array of size n

void printArr(int arr[], int n)

{

 int i;

 for (i = 0; i < n; ++i)

 printf("%d", arr[i]);

 printf("\n");

}

// Utility function to check if this node is leaf

int isLeaf(struct MinHeapNode* root)

{

 return !(root->left) && !(root->right) ;

}

// Creates a min heap of capacity equal to size and inserts all character of

// data[] in min heap. Initially size of min heap is equal to capacity

struct MinHeap* createAndBuildMinHeap(char data[], int freq[], int size)

{

 struct MinHeap* minHeap = createMinHeap(size);

 for (int i = 0; i < size; ++i)

 minHeap->array[i] = newNode(data[i], freq[i]);

 minHeap->size = size;

 buildMinHeap(minHeap);

 return minHeap;

}

// The main function that builds Huffman tree

struct MinHeapNode* buildHuffmanTree(char data[], int freq[], int size)

{

 struct MinHeapNode *left, *right, *top;

 // Step 1: Create a min heap of capacity equal to size. Initially, there are

 // modes equal to size.

 struct MinHeap* minHeap = createAndBuildMinHeap(data, freq, size);

 // Iterate while size of heap doesn't become 1

 while (!isSizeOne(minHeap))

 {

 // Step 2: Extract the two minimum freq items from min heap

 left = extractMin(minHeap);

 right = extractMin(minHeap);

 // Step 3: Create a new internal node with frequency equal to the

 // sum of the two nodes frequencies. Make the two extracted node as

 // left and right children of this new node. Add this node to the min heap

 // '$' is a special value for internal nodes, not used

 top = newNode('$', left->freq + right->freq);

 top->left = left;

 top->right = right;

 insertMinHeap(minHeap, top);

 }

 // Step 4: The remaining node is the root node and the tree is complete.

 return extractMin(minHeap);

}

// Prints huffman codes from the root of Huffman Tree. It uses arr[] to

// store codes

void printCodes(struct MinHeapNode* root, int arr[], int top)

{

 // Assign 0 to left edge and recur

 if (root->left)

 {

 arr[top] = 0;

 printCodes(root->left, arr, top + 1);

 }

 // Assign 1 to right edge and recur

 if (root->right)

 {

 arr[top] = 1;

 printCodes(root->right, arr, top + 1);

 }

 // If this is a leaf node, then it contains one of the input

 // characters, print the character and its code from arr[]

 if (isLeaf(root))

 {

 printf("%c: ", root->data);

 printArr(arr, top);

 }

}

// The main function that builds a Huffman Tree and print codes by traversing

// the built Huffman Tree

void HuffmanCodes(char data[], int freq[], int size)

{

 // Construct Huffman Tree

 struct MinHeapNode* root = buildHuffmanTree(data, freq, size);

 // Print Huffman codes using the Huffman tree built above

 int arr[MAX_TREE_HT], top = 0;

 printCodes(root, arr, top);

}

// Driver program to test above functions

int main()

{

 char arr[] = {'a', 'b', 'c', 'd', 'e', 'f'};

 int freq[] = {5, 9, 12, 13, 16, 45};

 int size = sizeof(arr)/sizeof(arr[0]);

 HuffmanCodes(arr, freq, size);

 return 0;

}
OUTPUT:

f: 0

c: 100

d: 101

a: 1100

b: 1101

e: 111

9. PROGRAM TO IMPLEMENT ACTIVITY SELECTION PROBLEM:
An activity-selection is the problem of scheduling a resource among several competing activity.
Problem Statement

Given a set S of n activities with and start time, Si and fi, finish time of an ith activity. Find the maximum size set of mutually compatible activities.

Compatible Activities
Activities i and j are compatible if the half-open internal [si, fi) and [sj, fj) do not overlap, that is, i and j are compatible if si ≥ fj and sj ≥ fi
GREEDY ALGORITHM FOR SELECTION PROBLEM
I. Sort the input activities by increasing finishing time.
 f1 ≤ f2 ≤ . . . ≤ fn
II. Call GREEDY-ACTIVITY-SELECTOR (s, f)

n = length [s]

A={i}

j = 1

for i = 2 to n

 do if si ≥ fj

 then A= AU{i}

 j = i

return set A
Analysis
Part I requires O(n lg n) time (use merge of heap sort).
Part II requires θ(n) time assuming that activities were already sorted in part I by their finish time.

IMPLEMENTATION
#include<iostream.h>

#include<conio.h>

main()

{

 int s[10],f[10],A[10],n,i,j,k=1;
cout<<"\nEnter the no. of activities(max 10):";

 cin>>n;

cout<<"\nEnter the start and finishing time of each activity";

cout<<"\n NOTE: In increasing order of finishing time\n";

 for(i=0;i<n;i++)

 {

 cin>>s[i];

 cin>>f[i];

 }

cout<<"\n ACTIVITY TABLE is:\n ";

 for(i=0;i<n;i++)

 {

 cout<<i+1<<"\t";

 }

cout<<"\nStart :\t";

 for(i=0;i<n;i++)

 {

 cout<<s[i]<<"\t";

 }

cout<<"\nFinish:\t";

 for(i=0;i<n;i++)

 {

 cout<<f[i]<<"\t";

 }

 A[0]=0; //Taking first activity by default

 i=0;

 for(j=1;j<n;j++)

 {

 if(s[j]>=f[i])

 {

 A[k]=j;

 i=j;

 k++;

 }

 }

cout<<"\nACTIVITY SELECTED ARE:\t";

 for(j=0;j<k;j++)

 {

 cout<<(A[j]+1)<<"\t";

 }

 getch();

 return 0;

 }

OUTPUT:

Enter the no. of activities(max 10): 10
Enter the start and finishing time of each activity
NOTE: in increasing order of finishing time

2
3

3
4

1
5

4
6

5
7

6
8

7
11

9
12

10
13

12
14

ACTIVITY TABLE is:

	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	Start :

	2
	3
	1
	4
	5
	6
	7
	9
	10
	12

	Finish:
	3
	4
	5
	6
	7
	8
	11
	12
	13
	14

ACTIVITY SELECTED are:
1
2
4
6
8
10
10. PROGRAM TO IMPLEMENT KNAPSACK PROBLEM:
The knapsack problem is a problem in combinatorial optimization. It derives its name from the maximization problem of choosing possible essentials that can fit into one bag (of maximum weight) to be carried on a trip. A similar problem very often appears in business, combinatorics, complexity theory, cryptography and applied mathematics. Given a set of items, each with a cost and a value, then determine the number of each item to include in a collection so that the total cost is less than some given cost and the total value is as large as possible.

GREEDY APPROXIMATION ALGORITHM
Martello and Toth (1990) proposed a greedy approximation algorithm to solve the knapsack problem. Their version sorts the essentials in decreasing order and then proceeds to insert them into the sack, starting from the first element (the greatest) until there is no longer space in the sack for more. If k is the maximum possible number of essentials that can fit into the sack, the greedy algorithm is guaranteed to insert at least k/2 of them.

DYNAMIC PROGRAMMING FOR 0-1 KNAPSACK PROBLEM
Mathematically the 0-1-knapsack problem can be formulated as:

Let there be [image: image37.png]

 items, [image: image38.png]A

 to [image: image39.png]

 where [image: image40.png]

 has a value [image: image41.png]

 and weight [image: image42.png]

. The maximum weight that we can carry in the bag is W. It is common to assume that all values and weights are nonnegative. To simplify the representation, we also assume that the items are listed in increasing order of weight.

· Maximize [image: image43.png]

 subject to [image: image44.png]dwa KW,z €{0,1)
~

Maximize the sum of the values of the items in the knapsack so that the sum of the weights must be less than the knapsack's capacity.
The bounded knapsack problem removes the restriction that there is only one of each item, but restricts the number [image: image45.png]

 of copies of each kind of item to an integer value [image: image46.png]

.

Mathematically the bounded knapsack problem can be formulated as:

· maximize [image: image47.png]

 subject to [image: image48.png]

The unbounded knapsack problem (UKP) places no upper bound on the number of copies of each kind of item and can be formulated as above except for that the only restriction on [image: image49.png]

 is that it is a non-negative integer. If the example with the colored bricks above is viewed as an unbounded knapsack problem, then the solution is to take three yellow boxes and three grey boxes.

Assume [image: image50.png]wy, Wo, ..., Wy, W

 are strictly positive integers. Define [image: image51.png]

 to be the maximum value that can be attained with weight less than or equal to [image: image52.png]

 using items up to [image: image53.png]

.

We can define [image: image54.png]

 recursively as follows:

· [image: image55.png]

 if [image: image56.png]w; > w

 (the new item is more than the current weight limit)

· [image: image57.png]

 if [image: image58.png]w;

N

.

The solution can then be found by calculating [image: image59.png]

. To do this efficiently we can use a table to store previous computations.

The following is pseudo code for the dynamic program:

Input:
Values (stored in array v)
Weights (stored in array w)
Number of distinct items (n)
Knapsack capacity (W)

for w from 0 to W do
 m[0, w] := 0

end for
for i from 1 to n do
 for j from 0 to W do
 if j >= w[i] then
 m[i, j] := max(m[i-1, j], m[i-1, j-w[i]] + v[i])

 else
 m[i, j] := m[i-1, j]

 end if
 end for
end for
This solution will therefore run in [image: image60.png]

 time and [image: image61.png]

 space. Additionally, if we use only a 1-dimensional array [image: image62.png]m|w]

 to store the current optimal values and pass over this array [image: image63.png]

 times, rewriting from [image: image64.png]

 to [image: image65.png]

 every time, we get the same result for only [image: image66.png]

 space.

IMPLEMENTATION:

#include<stdio.h>

#include<conio.h>

// A utility function that returns maximum of two integers

int max(int a, int b) { return (a > b)? a : b; }

// Returns the maximum value that can be put in a knapsack of capacity W

int knapSack(int W, int wt[], int val[], int n)

{

 int i, w;

 int K[n+1][W+1];

 // Build table K[][] in bottom up manner

 for (i = 0; i <= n; i++)

 {

 for (w = 0; w <= W; w++)

 {

 if (i==0 || w==0)

 K[i][w] = 0;

 else if (wt[i-1] <= w)

 K[i][w] = max(val[i-1] + K[i-1][w-wt[i-1]], K[i-1][w]);

 else

 K[i][w] = K[i-1][w];

 }

 }

 return K[n][W];

}

int main()

{

 int val[10];

 int wt[10];

 int W = 50;

 int n,i;

 printf("\nEnter no. of items :");

 scanf("%d",&n);

 printf("\nEnter the capacity of KNAPSACK :");

 scanf("%d",&W);

 printf("\nEnter the weights of items :");

 for(i=0;i<n;i++)

 {

 scanf("%d",&wt[i]);

 }

 printf("\nEnter the value of items :");

 for(i=0;i<n;i++)

 {

 scanf("%d",&val[i]);

 }

 printf("\nOPTIMAL VALUE OF KNAPSACK :");

 printf("%d", knapSack(W, wt, val, n));

 getch();

 return 0;

}
OUTPUT:

Enter no. of items : 3

Enter the capacity of KNAPSACK : 50
Enter the weights of items :
14
15
30

Enter the value of items :
19
25
40

OPTIMAL VALUE OF KNAPSACK : 65

11. PROGRAM TO IMPLEMENT FRACTIONAL KNAPSACK PROBLEM:

The knapsack problem is a problem in combinatorial optimization. It derives its name from the maximization problem of choosing possible essentials that can fit into one bag (of maximum weight) to be carried on a trip. A similar problem very often appears in business, combinatorics, complexity theory, cryptography and applied mathematics. Given a set of items, each with a cost and a value, then determine the number of each item to include in a collection so that the total cost is less than some given cost and the total value is as large as possible.

ALGORITHM:

General Algorithm-O(n):

Given:

	weight
	w1
	w2
	…
	wn

	cost
	c1
	c2
	…
	cn

Knapsack weight limit K

1. Calculate vi = ci / wi for i = 1, 2, …, n

2. Sort the item by decreasing vi
3. Find j, s.t.

w1 + w2 +…+ wj (k < w1 + w2 +…+ wj+1

	Answer is
	{
	wi pds item i, for i (j

	
	
	K-(i(j wi pds item j+1

IMPLEMENTATION:
#include <stdio.h>

int n = 5; /* The number of objects */

int c[10] = {12, 1, 2, 1, 4}; /* c[i] is the *COST* of the ith object; i.e. what

YOU PAY to take the object */

int v[10] = {4, 2, 2, 1, 10}; /* v[i] is the *VALUE* of the ith object; i.e.

what YOU GET for taking the object */

int W = 15; /* The maximum weight you can take */

void simple_fill() {

int cur_w;

float tot_v;

int i, maxi;

int used[10];

for (i = 0; i < n; ++i)

used[i] = 0; /* I have not used the ith object yet */

cur_w = W;

while (cur_w > 0) { /* while there's still room*/

/* Find the best object */

maxi = -1;

for (i = 0; i < n; ++i)

if ((used[i] == 0) &&

((maxi == -1) || ((float)v[i]/c[i] > (float)v[maxi]/c[maxi])))

maxi = i;

used[maxi] = 1; /* mark the maxi-th object as used */

cur_w -= c[maxi]; /* with the object in the bag, I can carry less */

tot_v += v[maxi];

if (cur_w >= 0)

printf("Added object %d (%d$, %dKg) completely in the bag. Space left: %d.\n", maxi + 1, v[maxi], c[maxi], cur_w);

else {

printf("Added %d%% (%d$, %dKg) of object %d in the bag.\n", (int)((1 + (float)cur_w/c[maxi]) * 100), v[maxi], c[maxi], maxi + 1);

tot_v -= v[maxi];

tot_v += (1 + (float)cur_w/c[maxi]) * v[maxi];

}

}

printf("Filled the bag with objects worth %.2f$.\n", tot_v);

}

int main()

{

simple_fill();

getch();

return 0;

}

OUTPUT:

Added object 5 (10$, 4kg) completely in the bag. Space left: 11.

Added object 2 (2$, 1kg) completely in the bag. Space left: 10.

Added object 3 (2$, 2kg) completely in the bag. Space left: 8.

Added object 4 (1$, 1kg) completely in the bag. Space left: 7.

Added 58% of object 1 in the bag.

Filled bag with the objects worth 17.33$.

12. PROGRAM TO IMPLEMENT NAIVE STRING MATCHING:

The naive string searching algorithm is to examine each position, i>=1, in text, trying for equality of pat[1..m] with txt[i..i+m-1]. If there is inequality, position i+1 is tried, and so on.

ALGORITHM
NAIVE-STRING-MATCHER(T, P)

1 n [image: image67.png]

 length[T]

2 m [image: image68.png]

 length[P]

3 for s [image: image69.png]

 0 to n - m
4 do if P[1 . . m] = T[s + 1 . . s + m]

5 then print "Pattern occurs with shift" s
ANALYSIS

Remember that |P| = m, |T| = n.

Inner loop will take m steps to confirm the pattern matches

Outer loop will take n-m+1 steps

Therefore, worst case is O((n-m+1)m).
IMPLEMENTATION:

#include<iostream.h>

#include<conio.h>

#include<string.h>

#include<stdio.h>

void naive_string_matcher(char text[],char pat[])

{

 char temp[100];

 int n=strlen(text);

 int m=strlen(pat);

 int i,j,s,k;

 for(s=0;s<=n;s++)

 {for(j=s,k=0;j<m;j++,k++)

 temp[k]=text[s+k];

 temp[k]='\0';

 if(strcmp(pat,temp)==0)

 cout<<"\n PATTERN OCCURS WITH SHIFT : "<<s<<"\n";

 m++;}

}

void main()

{ clrscr();

 char text[100],pat[100];

 cout<<"\n ENTER THE TEXT : ";

 gets(text);

 cout<<"\n ENTER THE PATTERN : ";

 gets(pat);

 naive_string_matcher(text,pat);

 getch();
}

OUTPUT:

 ENTER THE TEXT : abcdabcadbcadabcdadabc

 ENTER THE PATTERN: abc
PATTERN OCCURS WITH SHIFT : 0

PATTERN OCCURS WITH SHIFT : 4

PATTERN OCCURS WITH SHIFT : 13

PATTERN OCCURS WITH SHIFT : 19
13. PROGRAM TO IMPLEMENT RABIN KARP ALGORITHM FOR STRING MATCHING:
The Rabin-Karp algorithm is a string searching algorithm created by Michael O. Rabin and Richard M. Karp that seeks a pattern, i.e. a substring, within a text by using hashing. It is not widely used for single pattern matching, but is of considerable theoretical importance and is very effective for multiple pattern matching. For text of length n and pattern of length m, its average and best case running time is O(n), but the (highly unlikely) worst case performance is O(nm), which is one of the reasons why it is not widely used. However, it has the unique advantage of being able to find any one of k strings or less in O(n) time on average, regardless of the size of k.

ALGORITHM:

RABIN-KARP-MATCHER(T, P, d, q)

1 n [image: image70.png]

 length[T]

2 m[image: image71.png]

 length[P]

3 h [image: image72.png]

 dm-1 mod q
4 p [image: image73.png]

 0

5 t0 [image: image74.png]

 0

6 for i [image: image75.png]

 1 to m
7 do p [image: image76.png]

 (dp + P[i]) mod q
8 t0 [image: image77.png]

 (dt0 + T[i]) mod q
9 for s [image: image78.png]

 0 to n - m
10 do if p = ts
11 then if P[1 . . m] = T[s + 1 . . s + m]

12 then "Pattern occurs with shift" s
13 if s < n - m
14 then ts+1 [image: image79.png]

 (d(ts - T[s + 1]h) + T[s + m + 1]) mod q
ANALYSIS:

Rabin's algorithm is (almost always) fast, i.e. O(m+n) average-case time-complexity, because hash(txt[i..i+m-1]) can be computed in O(1) time - i.e. by two multiplications, a subtraction, an addition and a `mod' - given its predecessor hash(txt[i-1..i-1+m-1]).

The worst-case time-complexity does however remain at O(m*n) because of the possibility of false-positive matches on the basis of the hash numbers, although these are very rare indeed.

IMPLEMENTATION:

#include<iostream.h>

#include<conio.h>

#include<string.h>

// d is the number of characters in input alphabet

#define d 256

/* pat -> pattern

 txt -> text

 q -> A prime number

*/

void search(char *pat, char *txt, int q)

{

 int M = strlen(pat);

 int N = strlen(txt);

 int i, j;

 int p = 0; // hash value for pattern

 int t = 0; // hash value for txt

 int h = 1;

 // The value of h would be "pow(d, M-1)%q"

 for (i = 0; i < M-1; i++)

 h = (h*d)%q;

 // Calculate the hash value of pattern and first window of text

 for (i = 0; i < M; i++)

 {

 p = (d*p + pat[i])%q;

 t = (d*t + txt[i])%q;

 }

 // Slide the pattern over text one by one

 for (i = 0; i <= N - M; i++)

 {

 // Chaeck the hash values of current window of text and pattern

 // If the hash values match then only check for characters on by one

 if (p == t)

 {

 /* Check for characters one by one */

 for (j = 0; j < M; j++)

 {

 if (txt[i+j] != pat[j])

 break;

 }

 if (j == M) // if p == t and pat[0...M-1] = txt[i, i+1, ...i+M-1]

 {

 cout<<"Pattern found at index "<< i<<"\n";

 }

 }

 // Calulate hash value for next window of text: Remove leading digit,

 // add trailing digit

 if (i < N-M)

 {

 t = (d*(t - txt[i]*h) + txt[i+M])%q;

 // We might get negative value of t, converting it to positive

 if(t < 0)

 t = (t + q);

 }

 }

}

/* Driver program to test above function */

int main()

{

 char *txt = "rabin karp algo is better than naive algo ";

 char *pat = "algo";

 int q = 101; // A prime number

 cout<<"PATTERN:"<<pat<<"\n";

 cout<<"TEXT :"<<txt<<"\n";

 search(pat, txt, q);

 getch();

 return 0;

}
OUTPUT:

PATTERN : algo

TEXT : rabin karp algo is better than naive algo

Pattern found at index 11

Pattern found at index 37
14. PROGRAM TO IMPLEMENT GRAPH TRAVERSAL : BFS AND DFS
DEPTH-FIRST SEARCH (DFS) is an algorithm for traversing or searching a graph. Intuitively, one starts at the some node as the root and explores as far as possible along each branch before backtracking.

Formally, DFS is an uninformed search that progresses by expanding the first child node of the graph that appears and thus going deeper and deeper until a goal node is found, or until it hits a node that has no children. Then the search backtracks, returning to the most recent node it hadn't finished exploring. In a non-recursive implementation, all freshly expanded nodes are added to a LIFO stack for expansion.

Steps for implementing Depth first search

1. Define an array B or Vert that store Boolean values, its size should be greater or equal to the number of vertices in the graph G.

2. Initialize the array B to false

3. For all vertices v in G

if B[v] = false

process (v)

4. Exit

DFS algorithm used to solve following problems:
· Testing whether graph is connected.

· Computing a spanning forest of graph.

· Computing a path between two vertices of graph or equivalently reporting that no such path exists.

· Computing a cycle in graph or equivalently reporting that no such cycle exists.

ANALYSIS

The running time of DSF is [image: image80.png]

(V + E).

BREADTH FIRST SEARCH (BFS) is an uninformed search method that aims to expand and examine all nodes of a graph systematically in search of a solution. In other words, it exhaustively searches the entire graph without considering the goal until it finds it.

From the standpoint of the algorithm, all child nodes obtained by expanding a node are added to a FIFO queue. In typical implementations, nodes that have not yet been examined for their neighbors are placed in some container (such as a queue or linked list) called "open" and then once examined are placed in the container "closed".

Steps for implementing Breadth first search

1. Initialize all the vertices by setting Flag = 1

2. Put the starting vertex A in Q and change its status to the waiting state by setting Flag = 0

3. Repeat through step 5 while Q is not NULL

4. Remove the front vertex v of Q . process v and set the status of v to the processed status by setting Flag = -1

5. Add to the rear of Q all the neighbour of v that are in the ready state by setting Flag = 1 and change their status to the waiting state by setting flag = 0

6. Exit

Breadth First Search algorithm used in

· Prim's MST algorithm.

· Dijkstra's single source shortest path algorithm.
· Testing whether graph is connected.

· Computing a cycle in graph or reporting that no such cycle exists.

ANALYSIS
Total running time of BFS is O(V + E).

Like depth first search, BFS traverse a connected component of a given graph and defines a spanning tree. Space complexity of DFS is much lower than BFS (breadth-first search). It also lends itself much better to heuritic methods of choosing a likely-looking branch. Time complexity of both algorithms is proportional to the number of vertices plus the number of edges in the graphs they traverse.

IMPLEMNTATION OF BREADTH FIRST SEARCH
#include<stdio.h>

#include<conio.h>

#include<stdlib.h>

#include<assert.h>

/* maxVertices represents maximum number of vertices that can be present in the graph. */

#define maxVertices 100

/*Queue has five properties. capacity stands for the maximum number of elements Queue can hold.

 Size stands for the current size of the Queue and elements is the array of elements. front is the

 index of first element (the index at which we remove the element) and rear is the index of last element

 (the index at which we insert the element) */

typedef struct Queue

{

 int capacity;

 int size;

 int front;

 int rear;

 int *elements;

}Queue;

/* crateQueue function takes argument the maximum number of elements the Queue can hold, creates

 a Queue according to it and returns a pointer to the Queue. */

Queue * CreateQueue(int maxElements)

{

 /* Create a Queue */

 Queue *Q;

 Q = (Queue *)malloc(sizeof(Queue));

 /* Initialise its properties */

 Q->elements = (int *)malloc(sizeof(int)*maxElements);

 Q->size = 0;

 Q->capacity = maxElements;

 Q->front = 0;

 Q->rear = -1;

 /* Return the pointer */

 return Q;

}

void Dequeue(Queue *Q)

{

 /* If Queue size is zero then it is empty. So we cannot pop */

 if(Q->size==0)

 {

 printf("Queue is Empty\n");

 return;

 }

 /* Removing an element is equivalent to incrementing index of front by one */

 else

 {

 Q->size--;

 Q->front++;

 /* As we fill elements in circular fashion */

 if(Q->front==Q->capacity)

 {

 Q->front=0;

 }

 }

 return;

}

int Front(Queue *Q)

{

 if(Q->size==0)

 {

 printf("Queue is Empty\n");

 exit(0);

 }

 /* Return the element which is at the front*/

 return Q->elements[Q->front];

}

void Enqueue(Queue *Q,int element)

{

 /* If the Queue is full, we cannot push an element into it as there is no space for it.*/

 if(Q->size == Q->capacity)

 {

 printf("Queue is Full\n");

 }

 else

 {

 Q->size++;

 Q->rear = Q->rear + 1;

 /* As we fill the queue in circular fashion */

 if(Q->rear == Q->capacity)

 {

 Q->rear = 0;

 }

 /* Insert the element in its rear side */

 Q->elements[Q->rear] = element;

 }

 return;

}

void Bfs(int graph[][maxVertices], int *size, int presentVertex,int *visited)

{

 visited[presentVertex] = 1;

 /* Iterate through all the vertices connected to the presentVertex and perform bfs on those

 vertices if they are not visited before */

 Queue *Q = CreateQueue(maxVertices);

 Enqueue(Q,presentVertex);

 while(Q->size)

 {

 presentVertex = Front(Q);

 printf("Now visiting vertex %d\n",presentVertex);

 Dequeue(Q);

 int iter;

 for(iter=0;iter<size[presentVertex];iter++)

 {

 if(!visited[graph[presentVertex][iter]])

 {

 visited[graph[presentVertex][iter]] = 1;

 Enqueue(Q,graph[presentVertex][iter]);

 }

 }

 }

 return;

}

/* Input Format: Graph is directed and unweighted. First two integers must be number of vertces and edges

 which must be followed by pairs of vertices which has an edge between them. */

int main()

{

 int graph[maxVertices][maxVertices], size[maxVertices]={0}, visited[maxVertices]={0};

 int vertices,edges,iter;

 printf("ENTER NO. OF VERTICES AND EDGES IN GRAPH:\n");

 scanf("%d%d",&vertices,&edges);

 int vertex1,vertex2;

printf(“\nEnter the pair of vertices for directed edges:”);

 for(iter=0;iter<edges;iter++)

 {

 scanf("%d%d",&vertex1,&vertex2);

 assert(vertex1>=0 && vertex1<vertices);

 assert(vertex2>=0 && vertex2<vertices);

 graph[vertex1][size[vertex1]++] = vertex2;

 }

 int presentVertex;

 for(presentVertex=0;presentVertex<vertices;presentVertex++)

 {

 if(!visited[presentVertex])

 {

 Bfs(graph,size,presentVertex,visited);

 }

 }

 getch();

 return 0;

}
OUTPUT

ENTER NO. OF VERTICES AND EDGES IN GRAPH:

5
7
Enter the pair of vertices for directed edges:
0 1

1 3

3 0

1 2

2 4

4 1

3 4
Now visiting vertex 0

Now visiting vertex 1

Now visiting vertex 3

Now visiting vertex 2

Now visiting vertex 4
IMPLEMNTATION of DEPTH FIRST SEARCH

#include<stdio.h>

#include<assert.h>

#include<conio.h>

/* maxVertices represents maximum number of vertices that can be present in the graph. */

#define maxVertices 100

void Dfs(int graph[][maxVertices], int *size, int presentVertex,int *visited)

{

 printf("Now visiting vertex %d\n",presentVertex);

 visited[presentVertex] = 1;

 /* Iterate through all the vertices connected to the presentVertex and perform dfs on those

 vertices if they are not visited before */

 int iter;

 for(iter=0;iter<size[presentVertex];iter++)

 {

 if(!visited[graph[presentVertex][iter]])

 {

 Dfs(graph,size,graph[presentVertex][iter],visited);

 }

 }

 return;

}

/* Input Format: Graph is directed and unweighted. First two integers must be number of vertces and edges

 which must be followed by pairs of vertices which has an edge between them. */

int main()

{ int graph[maxVertices][maxVertices], size[maxVertices]={0}, visited[maxVertices]={0};

 int vertices,edges,iter;

 printf("ENTER NO. OF VERTICES AND EDGES IN GRAPH:\n");

 scanf("%d%d",&vertices,&edges);

 int vertex1,vertex2;

 printf("\nEnter the pair of vertices for directed edges:");

 for(iter=0;iter<edges;iter++)

 {

 scanf("%d%d",&vertex1,&vertex2);

 assert(vertex1>=0 && vertex1<vertices);

 assert(vertex2>=0 && vertex2<vertices);

 graph[vertex1][size[vertex1]++] = vertex2;

 }

 int presentVertex;

 for(presentVertex=0;presentVertex<vertices;presentVertex++)

 {

 if(!visited[presentVertex])

 {

 Dfs(graph,size,presentVertex,visited);

 }

 }

 getch();

 return 0;

}

OUTPUT

ENTER NO. OF VERTICES AND EDGES IN GRAPH:

5
7
Enter the pair of vertices for directed edges:
0 1

1 3

3 0

1 2

2 4

4 1

3 4
Now visiting vertex 0

Now visiting vertex 1

Now visiting vertex 3

Now visiting vertex 4
Now visiting vertex 2

15. PROGRAM TO IMPLEMENT DIJKSTRA’S ALGORITHM :
Dijkstra’s algorithm solves the single source shortest path problem on a weighted, directed graph only when all edge-weights are non-negative. It maintains a set S of vertices whose final shortest path from the source has already been determined and it repeatedly selects the left vertices with the minimum shortest-path estimate, inserts them into S, and relaxes all edges leaving that edge. In this we maintain a priority-Queue which is implemented via heap.

Algorithm:

Input Format: Graph is directed and weighted. First two integers must be number of vertices and edges which must be followed by pairs of vertices which has an edge between them.

maxVertices represents maximum number of vertices that can be present in the graph.

vertices represent number of vertices and edges represent number of edges in the graph.

graph[i][j] represent the weight of edge joining i and j.

size[maxVertices] is initialed to{0}, represents the size of every vertex i.e. the number of

edges corresponding to the vertex.

cost[maxVertices][maxVertices] represents the cost of going from one vertex to another.

distance[vertices] is initialized to 0, represents the distance of every vertex from the

source vertex.

· Initialize the graph and input the source vertex.

· Initially distance[source] = 0 i.e. distance to reach the source vertex is zero and distance to reach every other vertex is initialed to infinity (distance[i] = INF, where INF is a very large integer value).

· Initialize a temp Node, where Node is a structure with fields vertex and distance.

· For every vertex if it is a source vertex temp.distance = 0 and for rest of the vertices

temp.distance = INF. Store the number of vertex in temp.vertex.
Insert temp in the heap using Insert function.

· Until heap is not empty

• Initialize a Node min and store the minimum node of the heap in that using DeleteMin function.

• Initialize presentVertex = min.vertex
• If presentVertex has been processed move to the next vertex else

seen[presentVertex] = 1

• for iter=0 to size[presentVertex]-1

int to = graph[presentVertex][iter]

if(distance[to] > distance[presentVertex] + cost[presentVertex][iter])

distance[to] = distance[presentVertex] + cost[presentVertex][iter]

temp.vertex = to

temp.distance = distance[to]

Insert(temp)

iter + 1

• Lastly for every vertex print the vertex number and its distance from the source

vertex.

Heap is declared globally so that we do not need to pass it as an argument every time.

Firstly Heap is initialized with heapSize = 0, heap[0].vertex = -1 and heap[0].distance = -

INT_MAX(maximum possible value of signed int).

Functions:

1. Insert function – It takes the element to be inserted in the heap as an argument. heapSize is increased by 1, and element is inserted at the last place.

heapSize++

heap[heapSize] = element

Now position of the element is adjusted such that heap property is maintained. That is done by comparing it with its parent and swapping them until it is greater than its parent. Store the heapSize in a temporary variable (now, refers to the index at which we are now).Until heap[now/2]> element,

o heap[now] = heap[now/2] i.e. replace the value at index now by the

 value of its parent(index now/2)

o Divide now by 2 for moving above in the list.

Now when the right index has been found, store the element there.

heap[now] = element

2. DeleteMin function - heap[1] is the minimum element. So we remove heap[1]. Size of the heap is decreased. Now heap[1] is filled with the last element in the heap and see if it fits. If it does not fit, take minimum element among both its children and replace the last element with it. Again see if the last element fits in that place. Basically, percolate down and swap with minimum child as necessary. To check if the last element fits or not it suffices to check if the last element is less than the minimum element among both the children, if it is then we are done.

ANALYSIS:
The running time of dijkstra’s algorithm using priority Queue implemented via binary-heap

is O((|V| + |E|)log|V|) as in binary-heap DeleteMin function takes O(log|V|) time and Insert

function takes O(log|V|) time.
IMPLEMENTATION:

#include<stdio.h>

#include<conio.h>

#include<limits.h>

#include<assert.h>

#define maxVertices 100

#define infinity 1000010000

/*Declaring heap globally so that we do not need to pass it as an argument every time*/

/* Heap used here is Min Heap */

typedef struct Node

{

 int vertex,distance;

}Node;

Node heap[1000000];

int seen[maxVertices];

int heapSize;

/*Initialize Heap*/

void Init()

{

 heapSize = 0;

 heap[0].distance = -INT_MAX;

 heap[0].vertex = -1;

}

/*Insert an element into the heap */

void Insert(Node element)

{

 heapSize++;

 heap[heapSize] = element; /*Insert in the last place*/

 /*Adjust its position*/

 int now = heapSize;

 while(heap[now/2].distance > element.distance)

 {

 heap[now] = heap[now/2];

 now /= 2;

 }

 heap[now] = element;

}

Node DeleteMin()

{

 /* heap[1] is the minimum element. So we remove heap[1]. Size of the heap is decreased.

 Now heap[1] has to be filled. We put the last element in its place and see if it fits.

 If it does not fit, take minimum element among both its children and replaces parent with it.

 Again See if the last element fits in that place.*/

 Node minElement,lastElement;

 int child,now;

 minElement = heap[1];

 lastElement = heap[heapSize--];

 /* now refers to the index at which we are now */

 for(now = 1; now*2 <= heapSize ;now = child)

 {

 /* child is the index of the element which is minimum among both the children */

 /* Indexes of children are i*2 and i*2 + 1*/

 child = now*2;

 /*child!=heapSize beacuse heap[heapSize+1] does not exist, which means it has only one

 child */

 if(child != heapSize && heap[child+1].distance < heap[child].distance)

 {

 child++;

 }

 /* To check if the last element fits ot not it suffices to check if the last element

 is less than the minimum element among both the children*/

 if(lastElement.distance > heap[child].distance)

 {

 heap[now] = heap[child];

 }

 else /* It fits there */

 {

 break;

 }

 }

 heap[now] = lastElement;

 return minElement;

}

int main()

{

int graph[maxVertices][maxVertices], size[maxVertices]={0}, distance[maxVertices]={0}, cost[maxVertices][maxVertices];

 int vertices,edges,weight;

 int iter;

 printf("ENTER NO. OF VERTICES AND EDGES IN GRAPH:\n");

 scanf("%d%d",&vertices,&edges);

 int from,to;

 printf("\nEnter the pair of vertices for directed edges alongwith weights:");

 for(iter=0;iter<edges;iter++)

 {

 scanf("%d%d%d",&from,&to,&weight);

 assert(from>=0 && from<vertices);

 assert(to>=0 && to<vertices);

 graph[from][size[from]] = to;

 cost[from][size[from]] = weight;

 size[from]++;

 }

 int source;

 scanf("%d",&source);

 Node temp;

 for(iter=0;iter<vertices;iter++)

 {

 if(iter==source)

 {

 temp.distance = 0;

 distance[0]=0;

 }

 else

 {

 temp.distance = infinity;

 distance[iter]= infinity;

 }

 temp.vertex = iter;

 Insert(temp);

 }

 while(heapSize)

 {

 Node min = DeleteMin();

 int presentVertex = min.vertex;

 if(seen[presentVertex])

 {

 /* This has already been processed */

 continue;

 }

 seen[presentVertex] = 1;

 for(iter=0;iter<size[presentVertex];iter++)

 {

 int to = graph[presentVertex][iter];

 if(distance[to] > distance[presentVertex] + cost[presentVertex][iter])

 {

 distance[to] = distance[presentVertex] + cost[presentVertex][iter];

 /* Instead of updating it in the queue, insert it again. This works because the updated

 distance is less than previous distance which makes it to pop out of the queue early */

 temp.vertex = to;

 temp.distance = distance[to];

 Insert(temp);

 }

 }

 }

 for(iter=0;iter<vertices;iter++)

 {

 printf("vertex is %d, its distance is %d\n",iter,distance[iter]);

 }

 getch();

 return 0;

}
OUTPUT:

ENTER NO. OF VERTICES AND EDGES IN GRAPH:

5 9

Enter the pair of vertices for directed edges alongwith weights:
0 1
 4

1 2 3

2 3 4

0 2 2

2 1 1

1 3 2

1 4 3

2 4 5

4 3 1

vertex is 0, its distance is 0

vertex is 1, its distance is 3

vertex is 2, its distance is 2

vertex is 3, its distance is 5

vertex is 4, its distance is 6
16. PROGRAM TO IMPLEMENT FLOYD WARSHALL’S ALGORITHM:
Floyd-Warshall algorithm is a dynamic programming formulation, to solve the all-pairs shortest path problem on directed graphs. It finds shortest path between all nodes in a graph. If finds only the lengths not the path. The algorithm considers the intermediate vertices of a simple path are any vertex present in that path other than the first and last vertex of that path.
ALGORITHM:
Input Format: Graph is directed and weighted. First two integers must be number of vertices and edges which must be followed by pairs of vertices which has an edge between them.

maxVertices represents maximum number of vertices that can be present in the graph.

vertices represent number of vertices and edges represent number of edges in the graph.

graph[i][j] represent the weight of edge joining i and j.

size[maxVertices] is initialed to{0}, represents the size of every vertex i.e. the number of

edges corresponding to the vertex.

visited[maxVertices]={0} represents the vertex that have been visited.

distance[maxVertices][maxVertices] represents the weight of the edge between the two vertices or distance between two vertices.

Initialize the distance between two vertices using init() function.

init() function- It takes the distance matrix as an argument.

For iter=0 to maxVertices – 1

For jter=0 to maxVertices – 1

if(iter == jter)

distance[iter][jter] = 0 //Distance between two same vertices is 0

else

distance[iter][jter] = INF//Distance between different vertices is INF

jter + 1

iter + 1

Where, INF is a very large integer value.

Initialize and input the graph.

Call FloydWarshall function.
• It takes the distance matrix (distance[maxVertices][maxVertices]) and number of

vertices as argument (vertices).

• Initialize integer type from, to, via

For from=0 to vertices-1

 For to=0 to vertices-1

 For via=0 to vertices-1

 distance[from][to] = min(distance[from][to],distance[from][via]+distance[via][to])

 via + 1

 to + 1

from + 1

This finds the minimum distance from from vertex to to vertex using the min function. It checks it there are intermediate vertices between the from and to vertex that form the shortest path between them.
• min function returns the minimum of the two integers it takes as argument. Output the distance between every two vertices.

ANALYSIS:

The running time of Floyd-Warshall algorithm is O(V3), determined by the triply nested for loops.
IMPLEMENTATION:

#include<stdio.h>

#include<conio.h>

#include<assert.h>

/* maxVertices represents maximum number of vertices that can be present in the graph. */

#define maxVertices 100

#define INF 123456789

/* Input Format: Graph is directed and weighted. First two integers must be number of vertces and edges

 which must be followed by pairs of vertices which has an edge between them.

 */

int min(int a,int b)

{

 return (a<b)?a:b;

}

void init(int distance[maxVertices][maxVertices])

{

 int iter,jter;

 for(iter=0;iter<maxVertices;iter++)

 {

 for(jter=0;jter<maxVertices;jter++)

 {

 if(iter==jter)

 {

 distance[iter][jter] = 0;

 }

 else

 {

 distance[iter][jter] = INF;

 }

 }

 }

}

void FloydWarshall(int distance[maxVertices][maxVertices],int vertices)

{

 int from,to,via;

 for(from=0;from<vertices;from++)

 {

 for(to=0;to<vertices;to++)

 {

 for(via=0;via<vertices;via++)

 {

 distance[from][to] = min(distance[from][to],

 distance[from][via]+distance[via][to]);

 }

 }

 }

}

int main()

{

 int graph[maxVertices][maxVertices],size[maxVertices]={0},visited[maxVertices]={0};

 int distance[maxVertices][maxVertices];

 int vertices,edges,iter,jter;

 printf("ENTER NO. OF VERTICES AND EDGES IN GRAPH:\n");

 scanf("%d%d",&vertices,&edges);

 /*initialize distance between all pairs as infinity*/

 init(distance);

 int vertex1,vertex2,weight;

 printf("\nEnter the pair of vertices for directed edges alongwith weights:");

 for(iter=0;iter<edges;iter++)

 {

 scanf("%d%d%d",&vertex1,&vertex2,&weight);

 assert(vertex1>=0 && vertex1<vertices);

 assert(vertex2>=0 && vertex2<vertices);

 graph[vertex1][vertex2] = weight;

 distance[vertex1][vertex2] = weight;

 }

 FloydWarshall(distance,vertices);

 for(iter=0;iter<vertices;iter++)

 {

 for(jter=0;jter<vertices;jter++)

 {

 if(distance[iter][jter]>=INF)

 {

 printf("The shortest distance between %d and %d is Infinity\n",iter,jter);

 }

 else

 {

 printf("The shortest distance between %d and %d is %d\n",iter,jter,distance[iter][jter]);

 }

 }

 }

 getch();

 return 0;

}
OUTPUT:

ENTER NO. OF VERTICES AND EDGES IN GRAPH:

5 9

Enter the pair of vertices for directed edges alongwith weights:

0 1 3

0 2 8

0 4 -4

1 3 1

1 4 7

2 1 4

3 0 7

3 2 -5

4 3 6

The shortest distance between 0 and 0 is 0

The shortest distance between 0 and 1 is 3

The shortest distance between 0 and 2 is -1
The shortest distance between 0 and 3 is 4
The shortest distance between 0 and 4 is -4

The shortest distance between 1 and 0 is 3
The shortest distance between 1 and 1 is 0

The shortest distance between 1 and 2 is -4

The shortest distance between 1 and 3 is 1

The shortest distance between 1 and 4 is -1
The shortest distance between 2 and 0 is 7
The shortest distance between 2 and 1 is 4

The shortest distance between 2 and 2 is 0

The shortest distance between 2 and 3 is 5

The shortest distance between 2 and 4 is 3
The shortest distance between 3 and 0 is 2
The shortest distance between 3 and 1 is -1

The shortest distance between 3 and 2 is -5

The shortest distance between 3 and 3 is 0

The shortest distance between 3 and 4 is -2
The shortest distance between 4 and 0 is 8
The shortest distance between 4 and 1 is 5

The shortest distance between 4 and 2 is 1

The shortest distance between 4 and 3 is 6

The shortest distance between 4 and 4 is 0
17. PROGRAM TO IMPLEMENT BELLMAN FORD’S ALGORITHM:
The bellman-Ford algorithm solves the single source shortest path problems even in the cases in which edge weights are negative. This algorithm returns a Boolean value indicating whether or not there is a negative weight cycle that is reachable from the source. If there is such a cycle, the algorithm indicates that no solution exists and it there is no such cycle, it produces the shortest path and their weights.
ALGORITHM:
Input Format: Graph is directed and weighted. First two integers must be number of vertices and

edges which must be followed by pairs of vertices which has an edge between them.

maxVertices represents maximum number of vertices that can be present in the graph.

vertices represent number of vertices and edges represent number of edges in the graph.

graph[i][j] represent the weight of edge joining i and j.

size[maxVertices] is initialed to{0}, represents the size of every vertex i.e. the number of edges corresponding to the vertex.

cost[maxVertices][maxVertices] represents the cost of going from one vertex to another.

visited[maxVertices]={0} represents the vertex that have been visited.

Initialize the graph and input the source vertex.

BellmanFord function is called to get the shortest path.

BellmanFord function: This function takes the graph obtained (graph[][maxVertices]), cost

(cost[][maxVertices]) of going from one vertex to other, size (size[maxVertices]) of vertices,

source vertex and the total number of vertices (vertices) as arguments.

Initialize an array distance[vertices] to store the shortest distance travelled to reach vertex i.

Initially distance[source] = 0 i.e. distance to reach the source vertex is zero and distance to reach every other vertex is initialed to infinity (distance[i] = INF, where INF is a very large integer value).

We have to repeatedly update the distance |V|-1 times where |V| represents number of vertices as we visit the vertices.

for iter=0 to vertices-2

for from=0 to vertices-1

for jter=0 to size[from]

to = graph[from][jter]

if(distance[from] + cost[from][jter] < distance[to])

distance[to] = distance[from] + cost[from][jter]

jter + 1

from + 1

iter + 1

Lastly for every vertex print the shortest distance traveled to reach that vertex.

ANALYSIS:

The Bellman-Ford algorithm runs in time O(VE), since the initialization takes Θ(V) time, each of the |V| - 1 passes over the edges takes O(E) time and calculating the distance takes O(E) times.

IMPLEMENTATION:
#include<stdio.h>

#include<conio.h>

#include<assert.h>

/* maxVertices represents maximum number of vertices that can be present in the graph. */

#define maxVertices 100

#define INF 123456789

/* Input Format: Graph is directed and weighted. First two integers must be number of vertces and edges

 which must be followed by pairs of vertices which has an edge between them.

 */

void BellmanFord(int graph[][maxVertices],int cost[][maxVertices],int size[],int source,int vertices)

{

 int distance[vertices];

 int iter,jter,from,to;

 for(iter=0;iter<vertices;iter++)

 {

 distance[iter] = INF;

 }

 distance[source] = 0;

 /* We have to repeatedly update the distance |V|-1 times where |V| represents

 number of vertices */

 for(iter=0;iter<vertices-1;iter++)

 {

 for(from=0;from<vertices;from++)

 {

 for(jter=0;jter<size[from];jter++)

 {

 to = graph[from][jter];

 if(distance[from] + cost[from][jter] < distance[to])

 {

 distance[to] = distance[from] + cost[from][jter];

 }

 }

 }

 }

 for(iter=0;iter<vertices;iter++)

 {

 printf("The shortest distance to %d is %d\n",iter,distance[iter]);

 }

}

int main()

{

 int graph[maxVertices][maxVertices], size[maxVertices]={0}, visited[maxVertices]={0};

 int cost[maxVertices][maxVertices];

 int vertices,edges,iter,jter;

 printf("ENTER NO. OF VERTICES AND EDGES IN GRAPH:\n");

 scanf("%d%d",&vertices,&edges);

 int vertex1,vertex2,weight;

 printf("\nEnter the pair of vertices for directed edges alongwith weights:");

 for(iter=0;iter<edges;iter++)

 {

 scanf("%d%d%d",&vertex1,&vertex2,&weight);

 assert(vertex1>=0 && vertex1<vertices);

 assert(vertex2>=0 && vertex2<vertices);

 graph[vertex1][size[vertex1]] = vertex2;

 cost[vertex1][size[vertex1]] = weight;

 size[vertex1]++;

 }

 int source;

 scanf("%d",&source);

 BellmanFord(graph,cost,size,source,vertices);

 getch();

 return 0;

}
OUTPUT:
ENTER NO. OF VERTICES AND EDGES IN GRAPH:

5 10

Enter the pair of vertices for directed edges alongwith weights:

0 1 6

0 3 7

1 2 5

1 3 8

1 4 -4

2 1 -2

3 2 -3

3 4 9

4 0 2

4 2 7

0 0 0

The shortest distance to 0 is 0

The shortest distance to 1 is 2

The shortest distance to 2 is 4

The shortest distance to 3 is 7

The shortest distance to 4 is 2
